Hervé Cardot : Institut de Mathématiques de Bourgogne
Publications
Preprints, reports and unpublished works
Cardot, H., Koo, J-Y. (2000). Adaptive
Log-Splines
for Statistical Linear Inverse Problems with Application to 1D
Electrophoresis. Rapport technique Biométrie et Intelligence
Artificielle, INRA Toulouse.
Bergez, J.E., Cardot, H. and F. Garcia (2005). Quantile
regression trees for yield prediction using a simulation model.
Rapport technique Biométrie et Intelligence Artificielle, INRA
Toulouse.
Brossard, T., Cardot, H., Cavailhès (resp. scientifique) J., Hilal,
M., Joly, D. et Wavresky, P. (2006). Le
prix du climat et l'attrait du littoral en France : une évaluation à
partir des valeurs immobilières et du salaire. Rapport remis
au Ministère de l'équipement. 251 p.
Cavailhès, J., Joly, D., Brossard, T., Cardot, H., Hilal, M.,
Wavresky, P. (2008). Le climat en
France et son Prix. Rapport remis au Ministère de l'Emploi,
de la Cohésion Sociale et du Logement. 154 p.
Bourredjem, A., Cardot, H., Devilliers, H. (2024). Asymptotic
confidence interval, sample size formulas and comparison test for
the agreement intra-class correlation coefficient in inter-rater
reliability studies.Statistics in Medicine, accepted for publication.
Cardot, H. and Frascolla, C. (2024). Hypothesis testing for
Panels of Semi-Markov Processes with parametric sojourn time
distributions.Journal
of Statistical Planning and Inference, 228, 59-79. (A preliminary
version is available here).
Cardot, H., Mas, A. and P. Sarda (2023). Correction : CLT in functional linear regression models.Probability Theory and Related Fields, 187, 519-522.
Frascolla, C., Visalli, M., Cardot, H. and Schlich, P. (2023).
Indexes of individual repeatability and product discrimination in
TDS and TCATA and their statistical inference. Food
Quality and Preference,110, August 2023.
Peltier, C., Visalli, M., Schlich, P. and Cardot, H. (2023).
Analyzing Temporal Dominance of Sensations data with Categorical
Functional Data Analysis, Food
Quality and Preference,109, July 2023.
Frascolla, C., Lecuelle, G., Schlich, P. and Cardot, H. (2022). Two
sample tests for Semi-Markov Processes with parametric
sojourn time distributions: an application in sensory analysis.Computational
Statistics, 37, 2553-2580.
Cardot, H. and Musolesi, A. (2021). Assessing spillover effects
of spatial policies with semiparametric zero-inflated models and
random forests.In: Daouia A., Ruiz-Gazen A. (eds). Advances
in Contemporary Statistics and Econometrics, Springer, pages
319-338.
Mahieu, B., Schlich, P., Visalli, M. and Cardot, H. (2021). A
multiple-response chi-square framework for the analysis of
Free-Comment and Check-All-That-Apply data. Food
Quality and Preferences, Vol 93, October 2021.
Cardot, H. and Musolesi, A. (2020). Modeling temporal treatment
effects with zero inflated semi-parametric regression models: the
case of local development policies in France. Econometric
Reviews, 39, 135-157. A preliminary version is on
arXiv:1707.05745
Cardot, H., De Moliner, A. and Goga, C. (2020). Conditional bias
robust estimation of the total of curve data by sampling in a finite
population: an illustration on electricity load curves. Journal
of Survey Statistics and Methodology. 8, 453-482.
A preliminary is on
arXiv:1806.09949
Cardot, H., Lecuelle, G., Schlich, P. and Visalli, M. (2019). Estimating
finite mixtures of semi-Markov chains: an application to the
segmentation of temporal sensory data. Journal
of the Royal Statistical Society, Series C, 68,
1281-1303. A preliminary version is on arXiv:1806.04420
Cardot, H., De Moliner, A. and Goga, C. (2019). Estimation of
total electricity consumption curves by sampling in a finite
population when some trajectories are partially unobserved. Canadian
Journal of Statistics, 47,
65-89.
Lecuelle, G., Visalli, M., Cardot, H. and Schlich, P. (2018). Modeling
temporal dominance of sensations with semi-Markov chains. Food
Quality and Preferences, 67, 59-66.
Cardot, H., Godichon-Baggioni, A. (2017). Fast
Estimation of the Median Covariation Matrix with Application to
Online Robust Principal Components Analysis.TEST,
26, 461-480. A preliminary version is available here.
De Moliner, A., Goga, C. and Cardot, H. (2016). Estimation of
total electricity consumption curves of small areas by sampling in a
finite population. Compstat
2016, Eds Colubi, A., Blanco, A. and Gatu, C., 49-57.
Truntzer, C., Mostacci, E., Jeannin, A., Petit, J-M., Ducoroy, P.
and H. Cardot (2014). Comparison of
classification methods that combine clinical data and high
dimensional mass spectrometry data.
BMC
- Bioinformatics,15:385.
Benadjaoud, M-A., Blanchard, P., Schwartz, B.,
Champoudry, J., Bouaita, R., Lefkopoulos, D., Deutsch, E.,
Diallo, I., Cardot, H. and De Vathaire, F. (2014). Functional
Data Analysis in NTCP Modeling: A New Method to Explore the
Radiation Dose-Volume Effects. International
Journal of Radiation Oncology • Biology • Physics, 90,
654-663.
Lardin, P., Cardot, H. and Goga, C. (2014).Analyzing large datasets of
functional data : a survey sampling point of view.Journal
de la SFdS. 155,
70-94.
Sauder, C., Cardot, H., Disenhaus, C. and Le Cozler, Y. (2013). Non-parametric
approaches
to the impact of Holstein heifer growth from birth to insemination
on their dairy performance at lactation one. The
Journal of Agricultural Science, 151,
578-589.
Joly, D., Cardot, H. and Schaumberger, A. (2013). Improving
spatial
temperature estimates by resort to time autoregressive processes.International
Journal
of Climatology, 33,
2289-2297.
Cavailhès, J., Joly, D., Cardot, H., Hilal, M., Brossard,
T. and Wavresky, P. (2012). The
price of climate: French consumer preferences reveal spatial and
individual inequalities. In : Cities
and climate change: responding to an urgent agenda,
Volume 2. World Bank Urban Development Series, p.
649-669.
Book review for Biometrics,
2010, Vol. 66, 1312-1313. Functional
Data Analysis with R and Matlab by Ramsay, J. O., Hooker, G.,
and Graves, S (2009). Springer, New York.
Mostacci, E., Truntzer, C., Cardot, H., Ducoroy, P.
(2010). Multivariate
denoising methods combining wavelets and PCA for mass spectrometry
data. Proteomics, 10,
2564-2572.
Cardot, H., Sarda, P. (2010). Functional
Linear
Regression. In Handbook
of Functional Data Analysis, Ferraty, F. and Romain, Y.
(Eds.), Oxford University Press, 21-46.
Joly, D., Brossard, T., Cardot, H., Cavailhès, J., Hilal, M.,
Wavresky, P. (2009). Interpolation
par régressions locales : application aux précipitations en France,
L'Espace géographique, 38,
157-170.
Besse, P., Cardot, H. (2009). Statistical
modeling of functional data. In Data
Analysis, Ed. G. Govaert. Digital
Signal
and Image Processing series, John Wiley and Sons, 149-180.
Cardot, H., Chaouch, M., Goga, C. and C. Labruere (2008). Functional
Principal Components Analysis with Survey Data. In Functional
and Operatorial Statistics, Dabo-Niang, S. and Ferraty, F.
(Eds.), Physica-Verlag, Heidelberg, 95-102.
Cardot, H., Crambes, C. and P. Sarda (2007). Ozone
Pollution Forecasting using Conditional Mean and Conditional
Quantiles with Functional Covariates. In Statistical
Methods for Biostatistics and Related Fields, Hardle, W., Mori,
Y. and P. Vieu (Eds.), Springer Verlag, New York, 221-244.
Cardot, H., Sarda, P. (2006). Linear
Regression
Models for functional data. In The Art of
Semiparametrics, ed. W. Hardle, Physica-Verlag/Springer,
Heidelberg, 49-66.
Besse, P.C., Cardot, H., Faivre, R. and M. Goulard (2005).
Statistical
modelling of functional data. Applied Stochastic
Models in Business and Industry, Vol. 21, 165-173.
2003
- 2004
Cardot, H., Faivre, R. and P. Maisongrande (2004). Random
Effects Varying Time Regression Models: Application to Remote
Sensing. Compstat 2004 proceedings. ed. J.
Antoch, Physica-Verlag, 777-784.
Cardot, H., Crambes, C. and P. Sarda (2004). Conditional
Quantiles
with Functional Covariates : an application to Ozone pollution
forecasting. Compstat 2004 proceedings. ed. J.
Antoch, Physica-Verlag, 769-776.
Cardot, H., Koo, J-Y., Park, H.J. and A. Trubuil (2004).
Boosting
Diracs for Electrophoresis.Journal of
Computational and Graphical Statistics, Vol. 13, 659-673.
Cardot, H., Crambes, C., Sarda, P. (2004). Estimation
spline
de quantiles conditionnels pour variables explicatives
fonctionnelles. C. R.
Acad. Sci. Paris, Série I, 339, 141-144.
Cardot, H., F. Ferraty, F. et P. Sarda. (2000). Etude
asymptotique
d'un estimateur spline hybride pour le modèle linéaire fonctionnel.C. R. Acad. Sci. Paris, t.
330, Série I, 501-504.
Cardot, H., Ferraty, F. and P. Sarda (1999). Functional
Linear
Model. Statistics and Probability Letters. Vol.
45, 1, 11-22.
Cardot, H. (1998). Convergence du
lissage spline de la prévision des processus autorégressifs
fonctionnels. C. R. Acad.
Sci. Paris, t. 326, Série I, 755-758.
Cardot, H., Diack, C. (1998). Convergence
en
moyenne
quadratique de l'estimateur de la régression par splines hybrides.
C. R. Acad. Sci. Paris , t.
326, Série I, 615-618.
Besse, P.C., H. Cardot (1996). Approximation spline
de la prévision d'un processus fonctionnel autorégressif d'ordre 1.
Canadian Journal of Statistics/ Revue Canadienne de Statistique. Vol.
24, 467-487.