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ABSTRACT. Many variations such as the annual cycle in sea surface temperatures can be

considered to be smooth functions and are appropriately described using methods from

functional data analysis. This study de®nes a class of functional autoregressive (FAR) models

which can be used as robust predictors for making forecasts of entire smooth functions in the

future. The methods are illustrated and compared with pointwise predictors such as

SARIMA by applying them to forecasting the entire annual cycle of climatological El NinÄo±

Southern Oscillation (ENSO) time series one year ahead. Forecasts for the period 1987±1996

suggest that the FAR functional predictors show some promising skill, compared to

traditional scalar SARIMA forecasts which perform poorly.

Key words: climatological forecast, functional data analysis, ENSO, El NinÄo, functional
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1. Introduction

Many dynamic processes and relationships in the real world obey smooth functional forms.

For example, the position of a knee joint while walking traces a continuous differentiable

curve in space (Ramsay, 1988). Another example is provided by the seasonal evolution of

climatic temperatures caused by the annual march of the earth about the sun. Observations

of such processes, however, result in a ®nite discrete times series, that are often simply

treated as multivariate data. This multivariate approach completely ignores important

information about the smooth functional behaviour of the generating process. The smooth-

ness can provide a very useful constraint for making regression problems well-posed (Green

& Silverman, 1994).

Some early remarks about factorial analysis of functional data were made by Tucker (1958).

Much later, Deville (1974) performed a principal component analysis (PCA) of functional

observations, and Dauxois & Pousse (1976) produced a sophisticated functional analytical

exposition of PCA. Ramsay (1988) presented strong arguments for introducing functional

analysis methods for dealing with the statistics of functional data, and Besse & Ramsay (1986)

showed how functional PCA corresponds to using a modi®ed norm. Ramsay & Dalzell (1991)

discussed some tools for functional data analysis and applied them in the analysis of the annual

cycle of some monthly mean Canadian climate data. Rice & Silverman (1991) discussed the

estimation of means and covariances of functions and discussed functional norms in terms of

roughness penalties. Pezzulli & Silverman (1993) obtained perturbative expansions which

showed that functional PCA could be advantageous. Silverman (1996) and Besse et al. (1997)

introduced new ways of performing smoothed functional PCA by simply adding a roughness

penalty to the norm. A comprehensive description of methods for exploring and estimating

functional data can be found in the recent book by Ramsay & Silverman (1997).

The purpose of this study is to develop and compare different methods for forecasting

functional data. It is possible that the smoothness of functional data may be exploitable to give
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improved forecasts. The data can be considered as discrete observations made of a functional

process, in other words, a process taking values within a linear vector space of functions. Each

realization can be assumed to give a regular smooth curve. Several predictors are well suited to

this situation. Firstly, a vector valued non-parametric kernel predictor can be used as an

approximation to the predicted curve. A more recent tool dealing with the spline approximation

(Besse & Cardot, 1996) of a functional predictor (Bosq, 1991) can also be considered. If the

functional process is ®rst order autoregressive, one can also construct a functional extension of

AR(1) models, referred to here as FAR(1) models, in which whole functions are forecast one

step ahead. We propose in this paper a new hybrid method that is a local adaptation of the

FAR(1) model by introducing a weighted kernel estimator of the covariance operator. In this

article, these different methods will be compared by forecasting real climatic data, namely, the

annual cycle, represented by 12 monthly means, of climate indices describing the El NinÄo±

Southern OscillationÐone of the major climatic features controlling world climate. The

functional forecasts will also be compared to more conventional approaches such as the

parametric SARIMA model (Box & Jenkins, 1976; Brockwell & Davis, 1987), and a non-

parametric kernel predictor (Collomb, 1983; GyoÈr® et al., 1989; Bosq, 1996).

2. Forecasting methods

Consider a real-valued time series (Xk)k2Z observed p times a period for n periods

fx1, x2, . . ., xnpg. For example, 50 years of monthly mean climate data has n � 50 and

p � 12. The time series can also usefully be considered as a sequence of n functions

fyi(tj) � x(iÿ1) p� j; i � 1, ng of the parameter fti, j � 1, pg describing the time during the

period (e.g. calendar month).

2.1. Scalar kernel predictor

Firstly, consider the non-parametric prediction of a real process. Let

X t,(r) � (X t, X tÿ1, . . ., X tÿr�1) 2 Rr

be the vector of lagged variables and s the forecast horizon (0 , s < p). The autoregression

function is de®ned by

f s(x) � E(XT�sjXT ,(r) � x):

The kernel estimator based on (x1, . . ., X T ) of this regression function f s is then

f T ,s(x) �

XTÿs

t�r

xt�s K
xÿ x t(r)

hT

� �
XTÿs

t�r

K
xÿ x t,(r)

hT

� � (1)

where hT is the bandwidth window, and K, the kernel function, is a bounded symmetric r-

dimensional density. Theoretical results show that the detailed choice of the kernel function

does not in¯uence the asymptotic behaviour of prediction strongly (Bosq, 1996). In this

study, K is chosen to be the normal density kernel

K(x) � (2ð)ÿr=2 exp ÿkxk
2

2

� �
, x 2 Rr:

The horizon s prediction is then given by
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X̂ T�sjT � f T ,s(xT ,(r)):

The prediction is expressed as a weighted mean of past values, where the weights measure

the similarity between xT (r) and x t,(r), taking into account the process history.

Theoretical studies demonstrate the good asymptotic behaviour of this predictor, which can

reach the optimal rate of convergence under different sets of assumptions dealing with

stationarity, mixing conditions, Markovian properties or ergodicity. Furthermore, Bosq (1996)

demonstrated the robustness of the kernel predictors in the presence of certain non-stationarities.

This justi®es the common practice of dealing with the raw data without ®rst removing any

unknown deterministic component such as trend or seasonality which naturally take part of the

process history.

The choice of the hT value is crucial for prediction accuracy. It is optimized by means of the

cross-validation criterion, as in Poggi (1994),

CVs(h) �
X

k�r,:::,Tÿ pmÿs

(xk�s ÿ f s,h,ÿk(xk(r)))
2 (2)

where f s,h,ÿk is the horizon-s regression function based on a learning subset fx1, . . ., xkÿ1,

xk�1, . . ., xTÿmpg excluding the k th value. The m last periods is used for testing the

quality of prediction. The optimal value of hT is given by

hT � argmin
Xp

s�1

CVs(h):

For simplicity, we have not chosen to make hT deopend on the horizon prediction s. The

period of the seasonal component p is a natural choice for the order r. It can also be

optimized by using cross-validation (Vieu, 1995).

2.2. Functional kernel prediction

Let (Yi)i2Z be a second order stationary Hilbertian random process, which is assumed to be

Markovian. It is a sequence of random functions belonging to the functional Hilbert space

H. In our functional framework, we assume that Yi is a `̀ smooth'' stochastic process. One

way to control the smoothness and the regularity of observations is to let H to be a

Sobolev space W d , that is to say a collection of functions on the range [t1, tp] which

satisfy

f f ; f , f 9, . . ., f (dÿ1) absolutely continuous, f (d) 2 L2([t1, tp])g:

A natural approximation of a function when minimizing a norm in such a space is a

smoothing spline interpolation. However, if the above smoothness assumption is not valid

the use of a spline approximation is no longer appropriate. Other families of functional

spaces and basis functions such as wavelets can then sometimes be used to take into

acccount singularities and discountinuities.

The forecasting method studied by Bosq (1983) considered the conditional expectation

r(y) � E(YijYiÿ1 � y) where yi is the ith functional trajectory of the stochastic process. The

operator r is not necessarily linear, and can be estimated by using a non-linear kernel

regression; r(y) de®nes a regression between functions rather than vectors. For computational

simplicity, the distance between two curves belonging to H is evaluated according to the

L2[t1, tp] norm:
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k f ÿ gk2
L2 �

� tp

t1

( f (t)ÿ g(t))2 dt, 8( f , g) 2 H 3 H :

The functional kernel estimator is then de®ned as

r̂hn (y) �

Xnÿ1

i�1

yi�1 K
kyi ÿ ykL2

hn

� �
Xnÿ1

i�1

K
kyi ÿ ykL2

hn

� � ,

where K(:) is the usual Gaussian kernel.

In practice, the random curves yi are only known for discretized time values

ftj; j � 1, . . ., pg, and thus they must be approximated by some smooth ~yi functions. Let ~yi be

the spline interpolation (Wahba, 1990) of the ith trajectory based upon the vector of observa-

tions fyi(t1), . . ., yi(tp)g. By de®nition, it is the solution of the optimization problem

~yi � argminkL~yik2
L2 subject to ~yi(tj) � yi(tj), j � 1, . . ., p, (3)

where L is an order d linear differential operator. In all examples, L � D2, but more

general Chebyshev splines (Wahba, 1990; Ramsay & Silverman, 1997) can also be used.

We then consider the following approximation of the functional kernel estimator

r̂hn (y) �

Xnÿs

i�1

~yi�1 K
k~yi ÿ ykL2

hn

� �
Xnÿ1

i�1

K
k~yi ÿ ykL2

hn

� � , (4)

giving the prediction

ŷn�1 � r̂hn (yn)

where the function y is constrained to belong to the space of spline functions which are

third degree piecewise polynomials. A cross-validation procedure is performed to optimize

the bandwidth value hn. It aims at minimizing a quadratic prediction error between a

subset of r observed curves and their own prediction based on fyi; i � 1, . . ., nÿ r ÿ mg.
As above in the scalar kernel prediction case, the ®nal m curves are used to test the

quality of the forecast.

2.3. Prediction using a functional autoregressive model

Functional predictors for ®rst order functional auto-regressive FAR(1) processes (`̀ Auto-

Regressif Hilbertien d'ordre 1'' in French) were introduced by Bosq (1991). Independently,

Besse (1994a, b) and Besse et al. (1997) developed methods for simultaneous non-

parametric estimation of several curves, that involved solving an optimization problem that

has both a dimension reduction and regularity constraints (see (5) later). By merging the

two approaches, Besse & Cardot (1996) then developed an improved method for predicting

FAR processes that uses spline-smoothed functional PCA. After recalling the de®nition of

the smooth FAR predictor, we introduce, in this section, a local version to reduce the

sensitivity to the stationarity assumption.

We now consider (Yi)i2Z to be a ®rst order functional auto-regressive (FAR) process

satisfying
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8i 2 Z, Yi � rYiÿ1 � åi:

with E(Yi) � 0 and EkYik2
H ,�1. The autocorrelation operator r is compact and krk, 1.

The error terms fåig are assumed to be zero-mean independent identically distributed

random elements of H with Ekåik2
H � ó 2 ,�1.

Denote by h:, :iH the inner product of H and de®ne x
 y as the rank one operator which

satis®es

8(x, y, z) 2 H 3 H 3 H , [x
 y](z) � hx, ziH y:

The operators Ã � E(Yi 
 Yi) and Ä � E(Yi 
 Yi�1) are the simultaneous and lagÿ1

covariance operators of the process and r obeys the following relationship

rÃ � Ä:

A natural estimator of r can be obtained from the empirical covariance operators

Ã̂ � 1

n

Xn

i�1

yi 
 yi and Ä̂ � 1

nÿ 1

Xnÿ1

i�1

yi 
 yi�1:

2.3.1. Smooth FAR(1) predictor

As above, the random curves yi are only known for discretized time values, and must

therefore be approximated by functions ŷi. Different strategies can be considered, such as

linear interpolations (Pumo, 1992), spline interpolation or spline smoothing, before consid-

ering the prediction problem.

Since Ãÿ1 is unbounded, Bosq (1991) suggested approximating it by its restriction to the

reduced subspace spanned by the leading eigenvectors of Ã̂ . Besse & Cardot (1996) proposed

approximating the random curves directly by functions that both obey a rank and a smoothness

constraint. This leads up to adapt the classical spline smoothing de®nition by adding a rank

constraint, and then to consider the following optimization problem

min
ŷi2Hq

1

n

Xn

i�1

1

p

Xp

j�1

(yi(tj)ÿ ŷi(tj))
2 � lkD2 ŷik2

L2

 !
: (5)

Hq is a q-dimensional functional subspace to be estimated. It is spanned by the smooth

eigenvectors of Ã̂ associated with the q largest eigenvalues, relative to a speci®c Euclidean

metric depending on the smoothing parameter. The solution f ŷ1, . . ., ŷng is obtained by means

of a functional PCA (Besse, 1994; Besse et al., 1997).

Let us now consider the estimator of the covariance operators de®ned by

Ã̂ q, l � 1

n

Xn

i�1

ŷi 
 ŷi and Ä̂q, l � 1

nÿ 1

Xnÿ1

i�1

ŷi 
 ŷi�1: (6)

An estimator of the operator r is then constructed by inverting Ã̂ q, l in Hq

r̂q, l � Ä̂q, l(Ã̂ q, l)
ÿ1 (7)

and the smooth FAR(1) prediction is given by

ŷn�1 � r̂q, l yn: (8)

In this new approach, two parameters must be tuned: the dimension q, the number of

eigenvectors or principal components, and the smoothing parameter l. Their values are jointly

optimized by means of a cross-validation approach as above. Implicitly and for simplicity we
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assumed that all the observed curves share the same discretization design. Nevertheless it is

easy to drop that assumption and to accept different discretization designs or missing data.

Aiming at the same purpose within the functional PCA framework, Besse et al. (1997) use a

hybrid spline approximation merging box splines and spline smoothing. This technique can

easily be adopted within the functional prediction framework of the smooth FAR(1) model.

2.3.2. Local FAR(1) predictor

The FAR(1) prediction model is clearly based on the stationarity assumption for (Yj) j2Z.

This means that Ã and Ä do not depend on j. As this is a very strong assumption, it could

be interesting to consider a FAR(1) model that is robust with respect certain departures

from stationarity. This is achieved by mimicking kernel predictors, and thus by de®ning

local estimates of the covariance operators. These are weighted estimators whose weights

depend on the proximity between the last observed curve and the passed curves.

The prediction of yn�1 knowing the sequence fyi; i � 1, . . ., ng leads us to consider the

estimators

Ä̂hn �

Xnÿ1

i�1

~yi 
 ~yi�1 K
k~yi ÿ ~ynkL2

hn

� �
Xnÿ1

i�1

K
k~yi ÿ ~ynkL2

hn

� � , (9)

Ã̂hn �

Xn

i�1

~yi 
 ~yi K
k~yi ÿ ~ynkL2

hn

� �
Xnÿ1

i�1

K
k~yi ÿ ~ynkL2

hn

� � : (10)

The estimation of the operator r becomes

r̂q,hn � P̂q,hnÄ̂hn P̂q,hn Ã̂
ÿ1
hn

P̂q,hn

where P̂q,hn is the eigenprojector associated with the q largest eigenvalues of Ã̂ hn . Both q

and hn values are optimized by cross-validation.

2.3.3. Remarks

Formally we could de®ne some more complex predictors in both cases of the functional

kernel prediction and the local FAR model. In these two cases we could approximate each

curve by mean of a smoothing spline rather than an interpolating one. This would lead to

tune two smoothing parameters. It could be justi®ed when dealing with noisier or more

complex data, which does not appear to be necessary for the ENSO series used in this

study. For simplicity and for making the predictors better comparable, we chose to tune

each functional predictor by only one real parameter, either a bandwidth in the case of a

kernel regressor or a smoothing parameter spline functions.

It is quite easy to ®nd references dealing with asymptotic properties of kernel predictors

among a very wide literature, but only partial results are known in the functional case. Bosq

(1983) gives some results for the Hilbertain regression predictor, consistency and some

convergence rates are proved for the theoretical FAR(1) model in Bosq (1991) and Cardot

(1998) gives some results on its smooth approximation.
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3. Matrix representation

Each of the above functional predictors require either a spline interpolation or a spline

smoothing approximation of the raw data, and have a vectorial representation within a p-

dimensional subspace Sp of the reference Sobolev space H � W 2. Different kinds of spline

subspace may be used according to the choice of spline basis. A reproducing kernel basis

(Wahba, 1990) is easy to manipulate in the present simple case and can be computed in

any more general functional framework (Ramsay & Silverman, 1997). It has been used in

all further computations.

Let y be a function belonging to W 2, ~y its spline interpolation, solution of (3), ®tting the

values which are collected in the vector y � [y(t1), . . ., y(tp)]9. We denote by A l the smoothing

or hat matrix

A l � (M� lN)ÿ1

where the matrices M and N are respectively the matrix representation of the induced L2

norm and the W 2 semi-norm onto Sp

k~yk2
L2 � yMy � kyk2

M,

kD2 ~yk2
L2 � yNy � kyk2

N:

The usual spline smoothing of y is obtained by a spline interpolation of values contained

in the vector A ly.

3.1. Functional kernel

Let us denote by yi the column vector containing the ith row of Y, containing the observed

values of the ith period of the time series, and by Wh the diagonal matrix of the weights

wi � K((yi ÿ yn)9M(yi ÿ yn)=h)Xn

l�1

K((yi ÿ yn)9M(yi ÿ yn)=h)

:

The functional kernel predictor is directly drawn from (4) and

ŷn�1 �
Xnÿ1

i�1

wiyi�1:

As for all the subsequent functional predictors, the functional forecast estimation is

obtained by a spline interpolation of the values of ŷ.

3.2. Smooth FAR(1)

The data matrix Y was column-centred by subtracting the empirical mean ~y and we aimed

at forecasting climatic anomalies. The solution ~y of the smoothing spline problem with a

rank constraint (5) was deduced from the eigenanalysis of the `̀ smoothing'' covariance

matrix

S � 1

n
A

1=2
l Y9YA

1=2
l :

Let Vq be the orthogonal matrix containing q eigenvectors associated with the q largest

eigenvalues,
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ŷi � A
1=2
l VqV9qA

1=2
l yi, i � 1, . . ., n:

The matrix approximation of the covariance operators of (6) becomes

Ã̂ q, l � 1

n

Xn

i�1

ŷi ŷ9iM, and Ä̂q, l � 1

nÿ 1

Xnÿ1

i�1

ŷi�1 ŷ9iM:

Then the matrix approximation drq, l of r is drawn directly from (6) which gives us a

smooth functional forecast

ŷn�1 �drq, lyn � A ly:

In ®nite dimensions, the operator Ã̂ is generally invertible. Nevertheless, it is often severely

ill-conditioned and a dimension reduction that leads to a generalized inverse can often help to

improve prediction quality. As in Besse et al. (1997), it is often found that the regularity of the

eigenfunctions increases with their associated eigenvalues. This is similar to a Fourier decom-

position where a dimension reduction can act, together with spline smoothing, to help denoise

by ®ltering out high frequencies. In the case of a Wiener process, the eigenfunctions of the

covariance are identical to a Fourier decomposition. More details can be found in Besse &

Cardot (1996).

3.3. Local FAR(1)

The local approximation of the autocovariance operators are deduced from (9) and (10).

Ã̂ h �
Xn

i�1

wi,hyiy9iM

� Y9WhYM;

and

Ä̂h �
Xnÿ1

i�1

wiyi�1y9iM:

Then

(P̂qÃ̂ hP̂q)ÿ1 �
Xq

l�1

1

ëi

v lv9lM

where (ë l, v l) are the eigenelements of the matrix Ã̂ h with respect to the metrics M, and

r̂rq,h may be written as follows:

r̂rq,h �
Xq

l�1

v lv9l

 !
MÄ̂h

Xq

l�1

1

ë
v lv9l

 !
M: (11)

4. A climate example: ENSO

4.1. Data

Functional data methods for forecasting will be illustrated using real data, namely,

climatological time series describing the El NinÄo±Southern Oscillation (ENSO). We prefer

to test forecasts on real observed data rather than on simulated time series, which can

easily be constructed to yield good performances. ENSO is a natural phenomenon arising
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from interactions between the atmosphere and the ocean in the tropical Paci®c Ocean

(Philander, 1990). El NinÄo (EN) is the ocean component of ENSO, involving major changes

in tropical Paci®c sea surface temperatures (especially around December time), and the

Southern Oscillation (SO) is its atmospheric counterpart. The Southern Oscillation causes

correlations between the weather in widely separated regions of the globe, and was

discovered at the beginning of this century by Sir Gilbert Walker while searching for

suitable predictors for an Indian summer monsoon. Sir Gilbert Walker also developed

statistical methods such as the Yule±Walker equations for forecasting such climatic indices.

Most of the year-to-year variability in the tropics, as well as a part of the extra-tropical

variability over both the hemispheres, is related to this phenomenon. In 1983, an exceed-

ingly warm ENSO event occurred which caused worldwide climate damage estimated to

have cost more than 8 billion US dollars. Not surprisingly, there is much interest in

forecasting ENSO and current climate models show some ability to do this up to about 6

months in advance (Latif et al., 1994).

The interannual variability of ENSO is strongly modulated by the annual cycle, and vice

versa, and this interaction is known to play an important role in the predictability of ENSO

anomalies (Chen et al., 1997). Using a functional forecasting approach, we treat the annual

cycle as an entity in its own right and will use this concept to make one year ahead forecasts of

the entire annual cycle for both the El NinÄo and the Southern Oscillation indices. This approach

has never before been attempted in making forecasts of ENSO, which invariably attempt to

forecast only one particular month some months in advance.

A ®ducial and much used index of El NinÄo variability is provided by the sea surface

temperatures averaged over the NinÄo-3 domain (58S±58N, 1508W±908W). Monthly mean values

have been obtained for January 1950 to December 1996 from the gridded analyses made at the

US National Centers for Environmental Prediction (Reynolds & Smith, 1994; Smith et al.,

1996). (Data is freely available from http://nic.fb4.noaa.gov:80/data/cddb.) The time series of

this EN index is depicted in the upper panel of Fig. 1, and shows marked interannual variations

superimposed on a strong seasonal component.

Fig. 1. Two monthly mean time series which provide a contracted description of ENSO: The monthly mean

Nino-3 sea surface temperature index (8C) (upper panel), and the monthly mean sea level pressure at Tahiti

(hPa) (lower panel). The sea-level pressures are relative to 1000 hPa.
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The associated Southern Oscillation in sea-level pressure projects strongly on the sea-level

pressure at Tahiti, and hence sea level pressure measurements at Tahiti can be used as an index

for Southern Oscillation behaviour. The Darwin pressure index has been extended back to 1866

by Ropelewski & Jones (1987) and its recent evolution is depicted in the lower panel of Fig. 1.

It also shows a marked seasonality but is noisier than the EN index due to it being an

atmospheric rather than an oceanic variable. Both the El NinÄo (EN) and Southern Oscillation

indices have probability distributions close to normal (Stephenson, 1997).

4.2. Predictions

The kernel predictor is easy to compute from (1) for different horizons up to the period

s � 12. The autoregressive order is linked to this period (r � 12). Only the optimization of

the bandwidth value hT by minimizing (2) requires some computation effort.

To complete the comparison, classical parametric models (ARIMA) including seasonality

(Brockwell & Davis, 1987) were ®tted to the two series. These models are driven by seven

integer parameters setting the degree of each polynomial respectively dealing with the

autoregressive and the moving average part and removing polynomial or seasonal trends. The

most parsimonious convenient parametric model was (0, 1, 1) 3 (1, 0, 1)12 for the Sea Surface

Temperature (EN) and (1, 1, 1) 3 (0, 1, 1)12 for the Sea Level Pressure (SO). The portmanteau

test was performed to check that the residuals were not correlated and then validate these

models.

The same cross-validation procedure was used for all the functional predictors. The ®rst 36

years, from 1950, were considered as a learning subset. The optimal hn,q or l values minimized

the MSE when predicting years from the 32nd to the 36th. These optimal values, displayed in

Table 1, were used to tune the predictors in order to forecast the ten last years from the 37th to

the 46th.

The data were pretty regular, and the smoothing had a minor effect. As a consequence, the

optimal value of hn was small, especially for the EN data. This would not be the case with noisy

data such as highway traf®c (Besse & Cardot, 1996). Figure 2 displays the observed data of the

37th year and its forecasts. A linear interpolation joins the raw data and scalar predictions

whereas functional predictions are piecewise polynomials of degree 3.

4.3. State space model

We discuss in this section how the smooth FAR(1) predictor can be approximated by a

vector autoregressive model (VAR), and then how the equivalent state space approach

allows us to consider the goodness of ®t of the FAR(1) model. This is achieved by

considering the equivalent Markov representation with state variables of any multivariate

ARMA model (AkaõÈke, 1976).

For simplicity, smoothing and dimension reduction may be split into two steps, and then the

approximation of the FAR(1) model may be decomposed into the following procedure.

Table 1. Optimal parameter values for the different functional models

Smooth FAR(1) Local FAR(1) Kernel Functional kernel

EN q � 4

l � 1:6e-05

q � 4

hn � 0:9
hT � 0:9 hT � 0:3

SO q � 3

l � 8e-05

q � 2

hn � 5

hT � 1:5 hT � 0:6
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1. Smooth each observed curve by any convenient tool with one smoothing parameter l. For

instance by performing a functional PCA (Besse et al., 1997; Ramsay & Silverman, 1997).

2. Project the smoothed curves onto the subspace spanned by the ®rst q eigenvectors of the

covariance matrix to give the ®rst q principal components cj.

3. Estimate the multivariate ARMA predictor on these principal components.

For the third step, the state±space procedure of the SAS/ETS (SAS, 1989) software or S-

PLUS functions available from Statlib can be used to compute estimates and forecasts according

to these models. Iterating this procedure allows one to optimize a cross-validation index, and

thus ®nd optimal values for the parameters l and q.

Fig. 2. The raw ENSO time series of Paci®c surface temperatures during 1986 and its different forecasts.

Fig. 3. Southern oscillation pressures in Tahiti during 1986 and its different forecasts.
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The main value of the state±space approach is its capability to ®nd the best model in the sense

of the AkaõÈke's criterion. For both the cases of EN and SO data, the best model, in the sense of

the AkaõÈke's criterion, is found to be order one autoregressive. Furthermore, since EN data looks

very smooth, even without performing the ®rst step, the prediction results are very similar with

those obtained by the smooth FAR(1) model. In that case, the procedure just amounts to doing

PCA together with a vector autoregressive model estimation.

If the FAR(1) model fails, this approach can nevertheless give an heuristic approximation of

more complex models. This is justi®ed theoretically in the case of `̀ higher'' order auroregressive

models (Mourid, 1995), but not necessarily when dealing with a moving average component.

Further theoretical developments should study the consequences of projecting the innovation

components onto the eigensubspace.

4.4. Assessment of the forecasts

All the predictors used the data from 1950 to 1986 (36 years) to estimate their parameters,

and then were used to make 10 one year ahead forecasts for the independent period 1986±

1997. Various error statistics compiled over the years 1987±1996 are presented in Table 2

for the different forecasts.

The forecast quality has been assessed using both the often-used mean squared error (MSE),

and the mean relative absolute error (MRAE):

MRAE � 1

s

Xs

t�1

jX̂ T� tjT ÿ xT� tj
jxT� tj :

The MRAE accounts for non-centred quantities being much larger in certain seasons (e.g.

winter) which then causes the forecast errors for these months to dominate the MSE. It can

be seen that none of the forecasts are particularly skillful in forecasting the annual cycle of

either EN or SO one year ahead. This is perhaps, however, not so surprising considering

that present day forecasts of ENSO only show skill for leads of less than 6 months and

sometimes even less (Latif et al., 1994). Forecasting the annual cycle one year ahead,

therefore represents a more dif®cult exercise and provides a more exacting test for forecast

models. Most of the models give smaller MSE and MRAE than does the reference

climatological forecast, which is made by simply assuming that the following year annual

cycle will be equal to the mean annual cycle estimated over the previous years.

SARIMA is an exception which gives the worst predictions. This is perhaps due to a lack of

stationarity, the variance appears to be seasonal, or to the modulation of the annual cycle by the

Table 2. Mean squared error (MSE) and mean relative absolute error (MRAE) for one-year ahead forecasts

of El NinÄo and the Southern Oscillation indicies for the period 1987±1996. Climatology uses the time mean

annual cycle to forecast the following year's annual cycle and represents a simple benchmark forecast with

which to compare the other forecasts. Bold face indicates the best forecast for each index

El NinÄo index S. Osc. index

Predictor MSE MRAE MSE MRAE

Climatology 0.73 2.5% 0.91 6.3%

SARIMA 1.45 3.7% 0.95 6.2%

Kernel 0.60 2.3% 0.87 6.1%

Functional kernel 0.58 2.2% 0.82 6.0%

Smooth FAR(1) 0.55 2.3% 0.78 5.8%

Smooth FAR(1) with q � p � 12 0.60 2.4% 0.91 6.5%

Local FAR(1) 0.53 2.2% 0.82 5.8%
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interannual ENSO events (Gu & Philander, 1995), which leads to non-orthogonality between the

seasonal and trend components (Franses, 1996). This is in agreement with Carbon & Delecroix

(1993), who showed that a classical kernel predictor generally gives better results than a

SARIMA model.

Examination of Table 1 suggests that functional FAR forecasts outperform the other methods.

The local FAR(1) model forecasts the smoother EN data better than does the smooth FAR(1)

model, yet the smooth FAR(1) method forecasts the noisier SO data better. It can also be seen

that a dimension reduction improves the prediction. These preliminary results are encouraging

and more work is currently in progress. Furthermore, new methods should also be developed for

assessing the skill of functional forecasts, which take into account the functional nature of the

forecast. For example, which norms are the most appropriate for judging the forecast function,

and how one could assign a probability of success to such a forecast.

5. Concluding remarks

In the absence of any universal unique predictor that will work best for all encountered

cases, it is a wise strategy to experiment with a wide class of different estimators, and then

retain the most suitable one. In appropriate cases and for a small horizon prediction, a

classical ARIMA model can often be expected to give the best forecasts. However, in the

case of real data and longer forecast horizons, strong departures from the important

assumptions of linearity and stationarity can invalidate the use of ARIMA models. In such

cases, more robust predictors can perform better and are worth investigating. Both local

and smooth FAR predictors provide the best one year ahead forecasts of EN and SO,

respectively (Table 2). On one hand, smooth FAR generally yields better forecasts for rough

time series such as the SO index based on noisy pressures. On the other hand, the local

FAR model is more robust to non-stationarity.

This study has introduced both smooth and local functional FAR forecast models and

compared their ability against that of traditional scalar estimators such as SARIMA in

forecasting one year ahead the annual cycle of real climate ENSO data. ENSO indices are

strongly modulated by the annual cycle and are known to exhibit strong seasonal non-

stationarities. Furthermore, a forecast of more than 6 months represents a long horizon forecast

of ENSO and in such cases one might expect more robust predictors to perform better. This

study has indeed shown this to be the case, with the FAR models outperforming the other

predictors.

This study is a ®rst attempt to develop functional data analytic methods for use in forecasting

applications. The results appear promising and there are many potential situations where one

might consider the data to be functional, for example, the smooth evolution of annual cycles. In

such cases, forecasting an entire function using FAR models and their future extensions, offer

robust useful new ways to forecast data, and therefore merit further attention.
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