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First of all, I would like to congratulate H-G. Müller and W. Yang for this very

stimulating work which has potential applications in many domains. Dynamics in func-

tional data analysis is essential and this makes clear that FPCA is a nice tool to address

this issue. Being able to estimate and expand derivatives of a stochastic process when

observing only a few point of the trajectories is really a challenging, I would say al-

most incredible, issue that is addressed with brio in this paper. Note that I am really

impressed too by the performances of the package PACE since computations in such a

sparse context need to be developed by experts.

My main comment deals with the expansion of the ν-th order derivative of X(t)

proposed in equation (3) by M-Y and I would like to suggest another point of view

based on a direct representation of the derivatives themselves. When the target is the

ν-th order derivative the process X(t), I wonder if it would not be more interesting

to perform directly the Karhunen-Loève expansion of X(ν)(t). As a matter of fact the

nice properties of expanding the process into optimal deterministic orthonormal basis is

generally lost since the functions φ
(ν)
k (t) are generally not orthogonal anymore (except

for the special case of stationary processes for which the Fourier basis are eigenvectors

of the covariance operator AG). Maybe even more delicate is that one may need a large

number of functions φ
(ν)
k (t) to capture some important modes of variability of the ν-th

order derivative process and there is no clear way to check, when considering equation

(3) of M-Y truncated as in (10), what amount of the total variance is captured by a

representation which only considers K components. Thus interpretation in terms of

main modes of variability may be more difficult.

A direct calculus (see e.g. Loève, 1963, Chapter X) gives a simple link between the

covariance function of X(ν2)(t) and X(ν1)(s) and the covariance function G(t, s),

cov
“
X(ν2)(t), X(ν1)(s)

”
=

∂ν2+ν1

∂tν2∂sν1
G(t, s). (1)
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This means that it is possible to derive the basis functions of the Karhunen-Loève

expansion of X(ν) provided that we are able to estimate the following partial derivative
∂2ν

∂tν∂sνG(t, s) of the covariance function of X(t). Estimating this bivariate function

and its trace norm, which is the total variance of X(ν), can be done by considering

a modification of the estimator proposed in (8) by M-Y. Then one can get directly

the representation, cov
“
X(ν)(t), X(ν)(s)

”
=
P
k≥1 λν,k φν,k(t) φν,k(s), where now

φν,1, φν,2, . . . , are orthonormal eigenfunctions associated to the eigenvalues sorted in

decreasing order, λν,1 ≥ λν,2 ≥ . . . ≥ 0, of the covariance operator which is the integral

operator with kernel function ∂2ν

∂tν∂sνG(t, s). The Karhunen-Loève representation of

X(ν) is then given by

X(ν)(t) = µ(ν)(t) +
X
k≥1

ξ
(ν)
k φν,k(t), (2)

where the principal components score, ξ
(ν)
k =

R
T (X(ν)(t) − µ(ν)(t))φν,k(t)dt, are un-

correlated with var(ξ
(ν)
k ) = λν,k for k = 1, 2, . . . When observing sparse trajectories,

this alternative decomposition will also enjoy a simple BLUP formula, as in equation

(9) of M-Y, since now

E
h
ξ
(ν)
ik |Yi

i
= cTikΣ

−1
Yi

(Yi − µi) (3)

where cik = cov(Yi, ξ
(ν)
ik ) also satisfies, with ti = (Ti1 , . . . , TiNi)

T ,

cik =

Z
T
φν,k(s)

∂ν

∂sν
G(s, ti) ds. (4)

Considering, as in (14) in M-Y, the dynamics of the underlying stochastic system, we

directly get with (1) that

βν1,ν2(s, t) =
∂ν2+ν1

∂tν2∂sν1
G(t, s)/

∂2ν1

∂tν1∂sν1
G(s, s), (5)

which can also be approximated by truncations as in (24) in M-Y.

It is still not clear to me which approach should be preferred and this probably

depends on many ingredients such as the properties of the covariance function of the

process X(t), the order of the derivative under consideration as well as how sparse

the data are. On the one hand, trying to go directly to the target X(ν)(t) seems to

be a desirable property and considering the ν-th order derivative of the Karhunen-

Loève expansion of X(t) may lead to important losses in interpretation and accuracy

due to a need for a larger dimension K in order to get a finite dimension functional

space that can represent well the variations of the trajectories of X(ν)(t) around their

mean function µ(ν)(t) without being able to determine simply what has been lost when

truncating. More precisely, for each K, we always have

KX
k=1

λν,k = E

Z
T

 
KX
k=1

ξ
(ν)
k φν,k(t)

!2

dt ≥ E

Z
T

 
KX
k=1

ξkφ
(ν)
k (t)

!2

dt. (6)

Nevertheless, a precise comparison of the two different approaches does not seem to be

trivial. The important drawback of the direct approach given in (2) is that it necessi-

tates estimators of higher order derivatives of the covariance function, ∂2ν

∂tν∂sνG(t, s),



and these quantities will never be estimated as accurately as ∂ν

∂tνG(t, s). Its main in-

terest, which is described in (6), is that it may need an expansion with much less

terms for the same explained variance. This may be important since it is well known

(see e.g. Dauxois et al. 1982) that the accuracy of the estimators of the eigenfunctions

is rapidly decreasing as k increases and strongly depends on the inverse of the gap

between adjacent eigenvalues.

Another point that I would address is the importance in this work of the regularity

assumption of the trajectories which is hard to check visually with sparse observations.

Indeed, there can be a trap in truncated decomposition (10) in M-Y and one has to

be careful. The example of the brownian motion is of particular interest. All order

derivatives of the eigenfunctions exist (see e.g. Ash and Gardner, 1975) even if the

derivatives of the trajectories themselves do not exist. In such a situation equation (10),

based on a finite rank expansion of the trajectories can lead to misleading interpretation

and modeling. Note that when the curves are observed with fine grids some techniques

are available (see e.g. Blanke and Vial, 2008) to determine what is the amount of

regularity but this approach can not be extended in a straightforward way to sparse

observations.

To finish, I would like to suggest two directions for future investigations. On the

one hand, it can also be of interest to consider the dynamics of the regression function

itself. A preliminary work on the estimation by projection onto deterministic basis of

the derivative of the regression function in the functional linear model is proposed in

Cardot and Johannes (2009). Under some hypotheses, this type of estimator is shown to

attain optimal rates of convergence. Extension to functional responses deserves further

investigations.

The second issue deals with additional information on the individual trajectories.

When dealing with functional data one may also observe for each individual auxil-

iary real covariates. Taking this information into account not only to describe the

conditional mean, as suggested in Section 2, but also the conditional main modes of

variability can be of interest in many situations and has still not been addressed much

in the literature. A rather straightforward extension of the conditional functional PCA

(Cardot, 2007), which relies on a nonparametric estimation of the conditional covari-

ance function, would be to combine the dynamic point of view and the estimation

procedures with sparse data proposed in this paper. Such approach would certainly be

of interest when exploring real datasets. When one has at hand many real covariates

purely nonparametric approaches are less attractive and much work still needs to be

done to get tractable estimators of conditional covariance functions, the starting point

being probably to find parsimonious modeling of the conditional covariance.
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