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Abstract. We propose a very simple algorithm in order to estimate the geometric
median, also called spatial median, of multivariate (Small, 1990) or functional data
(Gervini, 2008) when the sample size is large. A simple and fast iterative approach
based on the Robbins-Monro algorithm (Duflo, 1997) as well as its averaged version
(Polyak and Juditsky, 1992) are shown to be effective for large samples of high
dimension data. They are very fast and only require O(Nd) elementary operations,
where N is the sample size and d is the dimension of data. The averaged approach
is shown to be more effective and less sensitive to the tuning parameter. The ability
of this new estimator to estimate accurately and rapidly (about thirty times faster
than the classical estimator) the geometric median is illustrated on a large sample
of 18902 electricity consumption curves measured every half an hour during one
week.
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1 Introduction

Estimation of the median of univariate and multivariate data has given rise
to many publications in robust statistics, data mining, signal processing and
information theory. For instance, the volume of data treated and analyzed
by ”Electricité De France” (E.D.F.) is getting increasingly important. The
installation of systems of measurement becoming more and more efficient,
will increase consequently this volume. Our aim will be to have a lighting on
these data and information delivered in a current way for a better reactivity
about some decision-makings. Then, for example, a rise in competence on the
use and modelling of structured data stream should allow the computation
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and the analysis of monitoring indicators and performances of the power
stations of production in real time, with a data stream environment. Most of
the data will be functional data, like load curves for example. Thus, there is
a need to have fast and robust algorithms to analyse these functional data.
In this context purposes are various, estimation of multivariate central point
in a robust way, clustering data around their median, etc.

Our work is motivated by the estimation of median profiles with online
observations of numerous individual electricity consumption curves which
are measured every days at fine time scale for a large sample of electricity
meters. The median temporal profile is then a robust indicator of habit of
consumption which can be useful for instance for unsupervised classification
of the individual electricity demand.

In a multivariate setting different extensions of the median have been
proposed in the literature (see for instance Small (1990) and Koenker (2005)
for reviews) which lead to different indicators. We focus here on the spatial
median, also named geometric median which is probably the most popular
one and can be easily defined in a functional framework (Kemperman (1987),
Cadre (2001), Gervini (2008)). The median m of a random variable X taking
values in some space H (H = Rd, with d ≥ 2, or a separable Hilbert space)
is

m =: arg min
u∈H

E (‖X − u‖) (1)

where the norm in H, which is the euclidean norm if H = Rd, is denoted by
‖.‖. The median m is uniquely defined unless the support of the distribution
of X is concentrated on a one dimensional subspace of H. Note also that
it is translation invariant. The median m ∈ H defined in (1) is completely
characterized by the following gradient equation (Kemperman, 1987),

Φ(m) = −E
(

X −m

‖X −m‖

)
= 0. (2)

When observing a sample X1, X2, . . . , XN of N (not necessarily indepen-
dent) realizations of X, a natural estimator of m is the solution m̂ of the
empirical version of (2),

N∑
i=1

Xi − m̂

‖Xi − m̂‖
= 0. (3)

Algorithms have been proposed to solve this equation (Gower (1974), Vardi
and Zhang (2000) or Gervini (2008)). They are needing important compu-
tational efforts and can not be adapted directly when data arrive online.
For example, the algorithm proposed by Gervini (2008) which is a variant of
Gower’s approach requires first the computation of the Gram matrix of the
data and has a computational cost of O(N2d). This also means that a great
amount of memory is needed when the sample size N is large. Furthermore
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it can not be updated simply if the data arrive online. We propose here an
estimation algorithm that can be simply updated and only requires O(d) op-
erations at each step in the multivariate setting. Let us also note that when
the data are functional they are generally observed on a common grid of d
design points, Xi = (Xi(t1), . . . , Xi(td)) and then the algorithm will require
only O(d) operations at each step, so that it has a global computational cost
O(Nd). Let us note that our algorithm is not adapted when one has sparsely
and irregularly distributed functional data and this issue deserves further in-
vestigation. Note also that in such a large samples context, survey sampling
approaches are interesting alternatives (Chaouch and Goga (2010)).

We present in section 2 the stochastic approximation algorithm which is
based on the Robbins-Monro procedure. Note that it is very simple and it
can be extended directly to the estimation of geometric quantiles (Chaud-
huri (1996)). In section 3 a simulation study confirms that this estimation
procedure is effective and robust even for moderate sample size (a few thou-
sands). We also remark averaging produces even more efficient estimations.
We finally present in section 4 a real study in which we have a sample of
N = 18902 electricity meters giving every half and hour, during one week,
individual electricity consumption and we aim at estimating the temporal
median profile.

2 A stochastic algorithm for online estimation of the
median

We propose a stochastic iterative estimation procedure which is a Robbins-
Monro algorithm (Duflo (1997), Kushner and Yin (2003)) in order to find the
minimum of (1). It is based on a stochastic approximation to the gradient of
the objective function and leads to the simple iterative procedure

m̂n+1 = m̂n + γn
Xn+1 − m̂n

‖Xn+1 − m̂n‖
, (4)

where the sequence of steps γn satisfies, γn > 0 for all n ≥ 1,
∑

n≥1 γn = ∞
and

∑
n≥1 γ2

n < ∞. Classical choices for γn are γn = g(n + 1)−α, with 0.5 <
α ≤ 1. The starting point, m0 is arbitrarily chosen to be zero.

When α is close to 1, better rates of convergence can be attained at the
expense of a larger instability of the procedure so that averaging approaches
(Polyak and Juditsky (1992), Kushner and Yin (2003), Dippon and Walk
(2006)) have been proposed to get more effective estimators which are less
sensitive to the selected values for α and g. When the value of g is a bit too
large, averaging also stabilizes the estimator and can reduce significantly its
variance. Thus, we also consider an averaged estimator defined as follows

m̃ =
1

N − n0

N∑
n=n0

m̂n, (5)
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where n0 is chosen so that averaging is made on the last ten percent iterations.

Remark 1. Note that this approach can be extended directly to get stochas-
tic approximations to geometric quantiles which are defined as follows by
Chaudhuri (1996). Consider a vector u ∈ H, such that ‖u‖ < 1, the geomet-
ric quantile of X, say mu, corresponding to direction u, is defined, uniquely
under previous assumptions, by

mu = arg min
Q∈H

E (‖X −Q‖+ 〈X −Q, u〉) .

It is characterized by Φu(mu) = Φ(mu)− u = 0, so that one can propose the
following stochastic approximation

m̂u
n+1 = m̂u

n + γn

(
Xn+1 − m̂u

n

‖Xn+1 − m̂u
n‖

+ u

)
. (6)

Remark 2. It can be shown, under classical hypotheses on the distribution
of X and the sequence γn, that these estimators of the population median
and quantiles are consistent. Rates of convergence can also be obtained in
the multivariate setting as well as the functional one when H is a separable
Hilbert space.

3 A simulation study

We perform simulations in order to check the effectiveness of the algorithm
and to evaluate its sensitivity to the tuning parameter g. We have simulated
samples of N = 5000 brownian motions discretized at d = 100 equispaced
points in the interval [0, 1]. We then added the mean function m(t) = sin(2πt),
t ∈ [0, 1], which is also the median curve for gaussian processes.

Our estimators are defined according (4) and (5) and we take the averaged
estimators m̃ with parameter n0 = 500. They depend on the sequence γn.
We consider, as it is usually done in stochastic approximation, a sequence
defined as follows

γn =
g

(n + 1)3/4

for few different values of g ∈ {0.1, 0.5, 1, 2, 5, 10}. The estimation procedure
is very fast and computing the geometric median estimator takes less than
one second on a PC with the R language.

We made 100 simulations and evaluate the estimation error with the loss
criterion L(m̂) =

√
1
d

∑d
j=1 (m(tj)− m̂(tj))

2
, with tj = (j − 1)/(d − 1). We

first present in Figure (1) the estimation error for m̂N for different values of
g and compare it to the error of the empirical mean curve. The iterative esti-
mators are always less effective than the mean curve and their performances
depend on the value of the tuning parameter g. In Figure (2) we clearly see
that the averaged estimators m̃ perform really better than the simple ones,
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Fig. 1. Approximation error for the mean and the Robbins-Monro estimator of the
median for different values of the tuning parameter g, when α = 0.75 .

with performances which are now comparable to the empirical mean, and do
not really depend on g provided that g is not too small.

We also considered the case of a contaminated distribution in which 5%
of the observations are also realizations of a brownian with mean function
which is now µc(t) = 5µ(t). The estimation error are presented in Figure (3)
and we clearly see that the empirical mean is affected by contamination or
outliers whereas the performances of the averaged iterative estimators are
still interesting.

As a conclusion of this simulation study, the averaged Robbins-Monro
procedure appears to be effective to estimate the geometric median of high
dimension data when the sample size is large enough and is not really sensitive
to the choice of the tuning parameter g.

4 Estimation of the median electricity consumption
curve

We have a sample of N = 18902 electricity meters that are able to send
electricity consumptions every half an hour during a period of one week,
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Fig. 2. Approximation error for the mean and the averaged Robbins-Monro esti-
mator of the median for different values of the tuning g when α = 0.75 .

so that we have d = 336 time points. We are interested in estimating the
median consumption curve. We present in Figure (4) the estimated geometric
median profile for g = 5 obtained by averaging the 1000 last iterations and
compare it with the mean profile and the pointwise median curve which is
obtained by estimating the median value at each instant tj , j = 1, . . . , 336.
The Robbins-Monro estimators are very similar, when averaging, for g ∈
[1, 10], and different starting points m0 and are not presented here.

We first remark that there is an important difference between the mean
curve and the geometric median curve that is probably due to a small frac-
tion of consumers which have high demands in electricity. There is also a
difference, even if it is less important, between the pointwise median and
the geometric median and this clearly means that pointwise estimation does
not produce the center of our functional distribution according to criterion
(1) which takes the following empirical values, 184.3 for the mean function,
173.3 for the pointwise median and 171.7 for the geometric median. The mul-
tivariate median was also estimated with the algorithm proposed by Vardi
and Zhang (2000) thanks to the function spatial.median from the R pack-
age ICSNP. The estimated median curve is exactly the same as our but the
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Fig. 3. Estimation error for the mean and the averaged Robbins-Monro estimator
of the median for different values of the tuning parameter g when 5% of the data
are contaminated.

computation time is much longer (130 seconds versus 3 seconds on the same
computer).
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Fig. 4. Comparison of the estimated geometric median profile with the mean elec-
tricity consumption curve and the pointwise medians.
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