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Abstract

This study deals with the simultaneous nonparametric estimations of n
curves or observations of a random process corrupted by noise in which sample
paths belong to a finite dimension functional subspace. The estimation, by
means of B-splines, leads to a new kind of functional principal components
analysis. Asymptotic rates of convergence are given for the mean and the
eigenelements of the empirical covariance operator. Heuristic arguments show
that a well chosen smoothing parameter may improve the estimation of the
subspace which contains the sample path of the process. Finally, simulations
suggest that the estimation method studied here is advantageous when there

are a small number of design points.

Key words: functional principal component analysis, nonparametric regression,
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splines.

1 Introduction

This paper aims at giving the asymptotic rates of convergence in mean integrated
square error (MISE) of the nonparametric estimation of the second order charac-
teristics of several independent and identically distributed sampled curves lying in
a common finite dimensional subspace of smooth functions. Futhermore, we sup-
pose that curves are corrupted by a white noise at the (non random) design points.

In applications, this may be the case when the data are sampled growth curves



(Boularan et al. 1993), meteorological data (Ramsay & Dalzell, 1991) or econo-
metric data (Kneip, 1995). The reader is also referred to the book of Ramsay &
Silverman (1997) which presents many statistical models for such functional data.

The method of estimation examinated here has been previously studied, in a
pratical way, by Besse et al. (1997). Their estimates are constructed by means of
hybrid splines (see Kelly & Rice (1990) for a definition and Diack & Thomas-Agnan
(1997) for the use of these functions to test convexity) and lead to a new functional
Principal Components Analysis (PCA). Besides, this PCA is adapted to the case
where the data are unbalanced. They show by simulations that this new method
can improve the estimation of the signal compared to usual nonparametric methods
such as smoothing splines.

Asymptotic properties of the PCA of Hilbert valued random variables have al-
ready been investigated by Dauxois et al. (1982) and various authors (see e.g. Bosq
1991, Pezzulli & Silverman 1993, Silverman 1996). When the observations are dis-
cretized, Biritxinaga (1987) and Besse (1991) have demonstrated the convergence
of the spline estimates of functional PCA. However, they did not assume that the
curves where corrupted by sampling noise at the design points and they did not
discuss the links between the asymptotic behaviour of the MISE and the different
parameters such as the number of curves and design points and the smoothing pa-
rameter value. In this article, we demonstrate the convergence of our estimates and
bound the MISE of the mean and the eigenelements of the smooth covariance op-
erator as a function of all these parameters. Then we demonstrate how smoothing
can improve the accuracy of the estimates.

The organization of the paper is as follows. In section 2, we establish notations,
describe the model and explain how the estimates are constructed. In section 3,
we give rates of convergence for the mean and the eigenfunctions of the covariance
operator. In section 4, heuristic arguments based on perturbation theory (as in
Pezzulli & Silverman, 1993 and Silverman, 1996) are used to show how smoothing
may improve our estimates. A simulation study is presented in section 5 where it
is noted that it can be advantageous to smooth when there is a small number of

design points. Finally, section 6 summarizes the proofs of our propositions. More

details may be found in Cardot (1997).

2 Model and estimation

2.1 Notations

Consider a random function 7 defined on the probability space (2, A, P) and taking
values in the separable Hilbert space L?[0, 1] equipped with the inner product:

Vige I20.1] (f.g) = / F()g(t) dt.
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Let’s denote by ||.||;2 the norm induced by this inner product and define f @ ¢ to

be the rank one operator which satisfies:

Vf.g.he L?[0,1] f@g(h)=(fh)g.

In order to approximate the sample paths, we use normalized B-splines (De
Boor 1978, Schumaker 1981). Denote by Si, the space of splines functions of degree
v with k equispaced knots. It is well known that Si, has a basis consisting of
r = k + v normalized B-splines, By;(t), 7 = 1,...,k + v. Let B.(¢) be the vector!
of {Bk;(t), 7=1,...,k + v} and consider the Gram matrices

1
[Ck]ﬂ = / Bkj(t)Bkl(t)dt 5 ],l = 1,...,7“ 5 (1)
0
~ 1<
{Ck} ” = }_?ZBk](tl)Bkl(tl) ) .]7l: 1,...,7“, (2)
! i=1
where t;,...,1, are the design points.

Define for all integer m smaller than v, the matrix Gy, :

(Gl = /B,g?)(t)B,g;n)(t)dt , L l=1,...,r. (3)

It is the matrix associated to the semi-norm defined by the differential operator D™
which measure the smoothness of any function belonging to Sy, .

In this article, the norm ||.|| will denote either

e the euclidian norm, Vb € R?, HbH2 = le bz,

o the usual matrix norm, that is for any real matrix A, we have [|A || = sup;x = [|A x]|

where ||x]| is the euclidian norm of vector x.

e the usual norm for bounded linear operators defined on L*[0, 1].

2.2 Model

Let S = {S(¢),t € [0,1]}, be a “smooth” second order random function composed

of a deterministic component y(?) and a centered random residual part Z(¢):
SW) = wl)+ 20, ] ()

The function p is the mean of S and the random part Z is supposed to belong to a
finite dimensional space, say F,, of smooth functions.

Suppose we observe n independent realizations of this signal corrupted by a
white noise € at the sampling points 0 <¢; < ... <, < 1. Then, we have the data
Y, € R”

Yi = H‘|‘Zi‘|‘€i, izl,...,n (5)

'In the succeding, we will use bold face letters to denote vector or matrices
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where :

Yi(ty) = plty) + Zi(t;) + €5 i=1...n,j=1....p
Z; € By, W(Z:) =0, E||Z|[7> < 00 E, C L*0,1], dimE, = ¢;
Zi independent of €5 IE(Q]‘) == 0, E(Q]‘Ql]‘/) == 0'252'2'/5]‘]‘/.

(6)
For sake of simplicity, the distribution of the design points is supposed to be uniform

on [0, 1]:

_ -l

( 1) J p_17

7=12,...,p.

It is also possible to get similar convergence results as those obtained in section 3
by assuming a weaker condition on the design points (Agarwall & Studden, 1980), at
the expense, however, of more complicated expressions. Nevertheless, the estimators
defined in next section are perfectly adapted to this situation.

The process Z is a second order process and therefore it can be written, in

quadratic mean, for a basis of orthonormal functions {¢y,...,¢,} of the subspace

E,

q

Z(t) =Y (2, ¢5) ¢4(D). (7)

j=1
The smoothness assumption on the signal S is then ensured by assuming that g and

each function ¢; satisfy the condition:

(A2) p and ¢q,...,¢, belong to C™[0,1], that is to say they have m continuous

derivatives.

This article aims at demonstrating the convergence of the estimates of ¢ and
&1, ..., ¢, deduced from the observation of the vectors {Y;,i =1,...,n}.
One way to compute the functions ¢; is to perform the spectral analysis of the

covariance operator of the random function Z:
Ir=E(ZoZ). (8)

In that case, these functions are the eigenfunctions of I" associated to the eigenvalues
A= <<Z, qu>2> and it is called the Principal Components Analysis (PCA) or the

Karhunen-Loeve expansion of Z (Dauxois et al. 1982).

2.3 Construction of the estimates
Fix v = m + 1, and denote by y; the least squares estimate of the :th sample path
in the B-splines basis. It can be written as follows:

A~ —1

yAz(t) = biCk Bk(t)
= §;Bu(1), (9)



where b; = zla le YiiBi(t;) and 8; = (N]:E)Z The number of knots & depends on p
and n but these indices will omitted for sake of simplicity.

The data specificity suggests two kinds of constraints in the estimation procedure.
On the one hand, a dimensionality constraint must assume that curves only span a
finite dimensional subspace. On the other hand, each real curve has to be sufficiently
smooth to satisfy the condition A,.

To estimate the sample paths and in order to take these constraints into account,
Besse et al. (1997) considered the following optimization problem, which may be

interpreted as a Tikhonov regularization of the least squares estimates ¥; :

. 1 < 12 A{m)‘ 2
- s . : 10
mH{Z(Hy il + o [7],) (10)
where p is a smoothing parameter and H is a g-dimensional subspace of Sg,.

Since §:C8; = /@(t)@\j(t)dt and §.Gys; = /@jm)(t)@\;m)(t)dt , the optimization

problem (10) is equivalent to:

n

) 1
%ﬁ{ﬁ§:<

=1

éz—qu%k—l'IO"UZHQ(}k) ;ue Ay, dim AqZQ} (11)
where A, is a ¢-dimensional subspace of R”.

Denote by 8, = % >, 8 the coordinates of the empirical mean in the B-splines

basis and then

I~ . L.y
S, = - g (8 — Skn)(8i — Skn)
=1

is the empirical covariance matrix. Finally, define
Hy, = (Ci+pGi) (12)

which acts as a "Hat matrix”.

2

The solution ? of problem (10) is given by:

ﬁm) = Pq7ka7ka(éZ’ — ék,n) —|— HWCkém 5 Z =1... , 1,

ip(t) = U Bi(t), te€][0,1]
where f’w = 2321 GMG;WH,;; is the H,;L—orthogonal projection onto the subspace
generated by the first ¢ eigenvectors (Vy,,...,V, ,), normalized with respect to the

metric H,;L, of the matrix:

H; ,C;S,.Cy. (13)

Each estimated sample path can also be written as follows:

Yio(t) = 11,(1) + Zip(1), £ € [0,1], (14)

25+ programs for carrying out the estimation are available by anonymous FTP from ftp.cict.fr

in the directory pub/lstatprob/ferraty.



where Ji, = (H}, ,C181.,) By is the smoothed estimate of the mean function and

~ !
%\i,p — <Pq,ka,ka(éi - ék,n)) Bk

is the smooth estimate of the rank constrained individual random effect. The esti-
mates of the ¢;’s defined in (7) are written as follows in the B-splines basis:

L) =V B(t), telo1], j=1,...,q
Let’s notice that these estimates of the eigenfunctions are not orthonormal with re-
spect to the usual inner product in L*[0, 1] (excepted if p = 0) since their coordinates
are normalized with respect to H,;;

Equivalently, the solution is given by:
i = HY2Q, HYPCu(s: — 810) + Hi G i = 1.,

where QW = 23‘21 v,V , is the orthogonal projection onto the subspace generated

by the first ¢ eigenvectors of the symmetric matrix:
H,C,S,.CH,”. (15)

Remark : with a different goal, the estimation of smooth eigenfunctions of
the covariance operator, the method proposed by Silverman (1996) leads to the
same estimates of the eigenelements. The main difference is that Silverman (1996)
assumed the sample paths to be continuoulsy observed and not contaminated with

noise. Silverman’s estimates, defined as the solution of the following problem:
G;,pcksnckvm = Xj,p and G;WH];LG’LP = dy;

are also the eigenvectors V; ,, normalized with respect to the metric H,;L, of the
matrix defined in (13).

3 Convergence in mean integrated square error

This section is divided into three parts. Firstly, we give rates of convergence for
the mean function. Then we bound the MISE of the eigenvectors of the covariance
operator without smoothing, that is to say by assuming that the smoothing parameter
p is fixed and equals zero. Finally, the use of perturbation theory (Kato, 1976), for
small values of p allows us to derive the MISE for the smooth eigenvectors.
Asymptotic properties rely upon approximation properties of B-splines functions
and on the existence of fourth order moments of random variables. We also assume

that the growth of p and k can be controlled when n tends to infinity.



3.1 Smoothed estimates of the mean function

The expression for the smooth estimate [i,, as defined in (14), is given by:
. . ~ 1
ﬁp(t) = /S\/Bk(t) where S, = H]w)CkSkm = H]w)Cka bk,n7

and let’s denote its expectation by ji, = IE [i,. The mean square error IE ||g — ﬁpHiQ

is written, as usual, as square bias plus variance:

~ 12 ~ 12 ~ o2
I\l = fipllze = Il — follze + E i, = iall72 -

Theorem 3.1 Under assumptions Ay, and Ay, if p satisfies p = o(k™*™) and k =

o(p) then we can bound bias and variance as follows:
lie = Bl = O(p* K¥™) + O(k™*"),

(7, — Al = O(n™).

Consequently, we have:

[, =l = O™ + O(k™") + O(p*k*™).

This theorem implies that if k, p and p are chosen as follows:

k=0 <nﬁ> , p= (’)(n_?’/z), % = o(1),

then the MISE is bounded above by:
B[, - ullZ = O(n™).

Furthermore, if we suppose that Z = 0 almost surely, this model is just the usual
nonparametric model. It is then easy to see that the variance is of order O(k/(np))
(see Cardot & Diack, 1998) and we obtain the optimal rate of convergence for
nonparametric estimates. One can also get intermediate rates of convergence by
assuming, for example, that 7 satisfies mixing conditions (Burman, 1991).

Remark: the parameters k and p both act as smoothing tools and consequently have
to be chosen simultaneously. We think that the cross validation method proposed by
Rice & Silverman (1991) and Hart & Werhly (1993) obtained by leaving one entire
curve out, could be usefully adapted to this problem. However, an asymptotic study

should be performed to justify such a pratice.



3.2 Results on the covariance operator without smoothing

Henceforth, we suppose for simplicity that the mean has been subtracted off, and
thus the sample paths are centered.

Consider the empirical covariance operator, say fnp, of the estimates y;(t) defined
in equation (9). Split each random vector, Y;, into a random signal Z; plus noise
€: Y, =7Z,4+¢€ 1=1,...,n Denote by z;, the B-splines estimate of the signal
deduced from Z; and by ¢; the B-splines estimate of the noise obtained from e€; .

Then, each nonparametric estimate of the sample paths can be written:
U=z +¢, 1=1,...,n,

and the empirical covariance operator I',, may be expressed as follows:

[ %Zyﬁ@yﬂ
=1

L e oy e~
EZ(%‘FQ)@(%‘FQ)
=1

= an + fl,np + f?,np + fe,npa

where

=1 =1
n n
~ 1 o ~ 1 -
FQ,np — g E € &z ) Fe,np = g E € X € .

The study of the asymptotic convergence is organized as follows:
o the sampling effect is studied in lemmas 3.2, 3.3, 3.4 and theorem 3.5,

e the discretization and B-splines approximation effect is measured in lemma

3.6.

The first step can be viewed as a study of the asymptotic variance whereas the
second one is a study of the asymptotic behaviour of the bias.

Some of the following results are based on the Hilbert-Schmidt properties of
covariance operators of second order Hilbert valued random variables. A Hilbert-

Schmidt operator T' defined on L?[0,1] is a bounded linear operator satisfying:

Y (Tei,Tei) < 400 (16)
1EN*
for any orthonormal basis (¢€;);en of L?[0, 1]. This relation defines a norm, say ||7')|4,
which satisfies ||7']|;, > ||T| .
The covariance operator I' of a second order random variable Z which takes
values in L?[0, 1] is a Hilbert-Schmidt operator. Futhermore, there exists a function

['(s,t) such that:



1
(@0 = [ Tenseds e ol (7)
o)
Actually, I'(s,t) is the covariance of the underlying continuous time process:
P(s,t) = E(Z(s), Z(1)).

The Hilbert-Schmidt norm of I' can therefore be expressed equivalently as follows:

Tl = /O/O(F(s,t))2 ds dt. (18)

The following lemma allows us to measure the norm between a covariance opera-
tor of a second order random variable and its empirical estimate. Its demonstration

is similar to the real case and consequently omitted.

Lemma 3.2 If (X;),oy is a sequence of i.i.d random variables which take values in
L2[0,1] and satisfy IE HXHLILQ < oo then the following holds:

1 1
B\, =Tl = —IB|IX][5. — Tl (19)

where I, = %2?21 X,@X;, and T = E(X @ X).

Furthermore, if the sequence of i.i.d second order random variables (Y;), oy s
independent of (X;),cy , then the cross covariance operator and its empirical estimate
satisfy:

BV BIXI, 1
EJ|A, - A, = =Rl S a ) (20)

where A,, = %2?21 i@ X and A =E(Y @ X).

Lemma 3.3 If sup IE[Z(¢)*] < oo, we have:
tefo,1]
2 1
=0 - 21
=o(3). 21)

Remark : Using relation (7) and the regularity of the functions ¢;, it is easy to

E‘rnp—rp

where O() does not depend on p and k.

check that condition sup, IE[Z(¢)*] < +oo of lemma 3.3 is equivalent to the following
assumption: IE HZH4L2 < +o00.

Let’s define ]B;W = Z;,jzl ajje;; where aj = {6:}” , l,g=1,...,r. 1t is the
discrete approximation of the projection onto the space Sg, in the basis generated

by the rank one operators

¢ij = Brj @ Byi, 1,5 =1,...,1. (22)



Lemma 3.4 We have

. 2

0' o~
E(T..,) = ?P;w,.

Moreover, if IE(€*) < oo then the following holds:
2
12
o)
H np
Theorem 3.5 If supE[Z(#)'] < 0o, E(e*) < o0 and k < p, then we have
t

ol

The following lemma measures the loss induced by the discretisation of the curves

2
o~ 0' o~
Fe,np - _Pkm

E

N . 2

0' o~
It an - (Fp + ?Pk,p)

and shows that the covariance operator of the noise tends to zero.

Lemma 3.6 Under assumption Ay and if k = o(p) when k and p tend to infinity,
we have

Hr—fp

-0 ().

-o(3)
g ool

Let’s denote by {q/b\ln, ey q/b\qn} the eigenvectors of fnp associated to the decreasing

0'2~

_Pkm

Hence

sequence of eigenvalues. Since these functions are determined up to sign change, we

will suppose that < q/gjn, ¢; >> 0. We can now state the main theorem of this section:

Theorem 3.7 Under assumptions Ay, Ay, if k = o(p) when n and k tend to infin-

ity, then we have

(i

Moreover, if the eigenvalues of I' are distinct, \y > ... > A, > 0, then the following
holds:

(i

o\ 1/2
[, —T ) = O™™)+O0n Y +O(p™). (23)

Din — &;

5\ 1/2
L2> = O™+ 0 V) +0(p7Y), j=1,...,q. (24)
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Remarks:
1. The rate of convergence depends explicitly on the number of design points p. If
we choose p & \/n, k = O(n'/?"), the condition k = o(p) is satisfied and

5 \ 1/2 e
(lE‘ L2> = O(n~V?).

2. We have supposed, for simplicity, that the eigenvalues of I" were distinct. This

Djn — &

condition could be relaxed by considering the subpaces generated by the eigenvectors
of I'. Then one should work with projections instead of eigenvectors such as in
Dauxois et al. (1982).

3. The assumption ¢ < oo is crucial in lemma 3.6 to bound ||I' — fp

satisfied, it would still be possible to obtain some results of convergence. We could

. If it wasn’t

show for instance the convergence of I towards I by using compactness properties
of covariance operators (Besse 1991) but in counterpart, one would loose rates of
convergence. On the other hand, we could add a condition on the decrease of the

eigenvalues such as A\; = ar’,a > 0,7 €]0, 1[, and control the growth of ¢ with n,p

and k.

3.3 Smooth estimates of the eigenelements

In order to prove the consistency of the smooth estimates, we will study the asymp-
totic behaviour of the eigenvectors of the operator fn%p, whose matrix representa-
tion in the B-splines basis is defined by (13). The demonstration of this result is
based on an asymptotic expansion, for small p, of fWW.

Let {q/b\fm, J =1,...q} be the first ¢ eigenvectors of fWW. Since they are deter-

mined only up to a sign change, we suppose that (< ¢%,,¢; >) > 0.

We can now state the main theorem of this section:

Theorem 3.8 Under assumptions of theorem 3.7 and if p = o(k™*™), the following
holds:
(x[f

5 N\ 1/2
i i L2> =0~ )+ O™+ O(p ™)+ O(p™"), j=1,....q

The mean square error of smooth estimates of the eigenfunctions tends to zero

at the same rate if p is chosen as follows:

p=0n"%?.
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4 Heuristic investigation of the effect of smooth-
ing

In this section, we carry out some heuristic calculations based on perturbation theory
(Kato, 1976), for large n and small p to determine whether, and when, smoothing
has an advantageous effect on the estimation of any particular eigenfunction. In
order to simplify calculations, parameters k& and p were supposed to be fixed. Sim-
ilar calculus have already been performed by various authors such as Pezzulli &
Silverman (1993) and Silverman (1996). We investigate here, within the subspace of
splines functions &y, ,,, the effect of smoothing on the mean square error of estimation
in order to establish a link between the optimal smoothing parameter and the num-
ber of observed curves. This asymptotic expansion is justified by the convergence
of our estimates demonstrated in theorem 3.8. Nevertheless, we have to make the
additional assumption on the distribution of the random vectors Z; and €;:

(As) for all ¢, Z; and €; are independent gaussian vectors.

Since the eigenelements of the matrix M, , defined in (13) are equal to those
obtained by the Silverman (1996) procedure (remark in section 2.3), we only recall
the method used to get an asymptotic expansion of the eigenelements. Then, we
are able to approximate the quadratic error of estimation, within &y, of a new and

independent curve.

4.1 Asymptotic expansions
Using the matrix representation of the covariance operator

M,, = H,,CS,C
= (I+pC'G)7's,C

and recall its eigenvectors Vy ,, ..., V, , are orthonormal with respect to metric H;;
Define M, = S,C and M = IE(M,,). The eigenelements </)\\g7p, 6471)) of M,, ,
satisfy:

MnG&p = )\470 <I + pC_1G> 6470.

We can deduce from the central limit theorem that the covariance structure of
Vr(M,, — M) does not vary with n (Silverman, 1996) and p and k since they are
supposed to be fixed. Then, one can express M, = M + n~'/?R, where R is a
random matrix with mean zero.

Assuming n is large enough, p is small enough and using bounds obtained in
theorem 3.8, one can write the asymptotic expansion of the eigenelements of M,, ,

as:

>)
<
Il

N0 4 g+ pn P pag + 07 gy 4 pPpag + - (25)
v+ 0" ?u, + pus + ,07”6_1/21112 +n" gy 4 pPugy 4 (26)

<
™
|
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with

(27)

anp = }\\p <I + pC_1G> Gp and G;H];})Gp =1
Mv = v and VvCv=1

Subscript £ is omitted for sake of simplicity. By identifying the orders in n="/2, p,n="?p, ...

and defining A = C™'G, one obtain the two following sets of equations:

u|Cv = 0
2u,Cv + Vv'Gv = 0
u|Gv +uj,Cv+ujCu;, = 0 (28)
2u};Cv 4+ u|Cu, =0
2u,,Cv + 2u,Gv + u,Cu;, = 0
and
Rv + Mu, = v+ Ay
Mu, = [V + Auy + AAv
Ru; + Muis = pouy + s + piav 4+ Auge 4 p2v + A Aug + i Av - (29)
Muy;; + Riwy = ppv+ Aug + g
Mu,, = 129V + Agg + pous + s Av 4+ AAu,

Define P; = v;v’C, the C-orthogonal projection onto the subspace generated

P,
T, = .
! Z )\] - )\1/
V#]
These operators commute since they have the same eigenvectors and are symmetric

by the vector v; and

with respect to metric C.

We then get from above:

1 = tr(PR)=(v,Rv)c

pe = —Atr(P,A)=-\d?

uy = T,Rvy

u, = —XT/,Av,— %d?w

u; = TRu — iy Touy — %u’lCulw

u; = TRuy; — A TiAu; — 1 Touy — 12 TAv — 1o Touy — (W) Cuy + v Gvy) vy
Uy, = —AT,Auy — 2 ToAvy — o Tyouy — (%u’zCuz + u’QGVg> A,

(30)
where di = v,Gv, is the semi-norm of the vector v, which measures the smoothness

of the corresponding function belonging to Sy,

4.2 Is smoothing advantageous ?
In this section we will expand the MISE, in terms of n and p, for the estimates of:

e eigenvectors,

e a new and independent sampled curve.

13



4.2.1 Approximation of the eigenfunctions

Consider the following risk function:

MISE(p) = E (|[Ve, — VéH%j)

as a criterion for measuring the accuracy of the estimated eigenvectors. It is suf-
ficient to compare MISE(p) with MISE(0) to determine when smoothing has an
advantageous effect. Neglecting terms of order n=3/2, p?/n, p>n="/2, ..., one obtains

the following approximation:
E (|[Ve, —vellg) ~ E 0™ |Julg +2pn~2u,Cu, + 207! {u}, Cu, + uf,Cu, }

+ 07 uzlle) -
(31)

Using IE R =0, Tyv, = 0 and the assumption of normality Aj we obtain
[E(RAR) = MAM + tr(AM)M

for any symmetric matrix A (see Pezzulli & Silverman 1993). Hence, we can obtain
for instance:
E |luc = E (TRv,TRv)c
= [E <V, RT?RV>C
= (v, MT;Mv)c + tr (T;M) (v, Mv)
A
= N —_— .
; (Ae = A)?

Pursuing these types of manipulations, we finally obtain:

]E<U1,UQ>C =0
1 Ay
Blusue = i) 5 =55
vt ’ ( 2 2)
1 Ay A (d; —d2 39
O R P DY vy w R D Dy vy w
VL v VL v
2 1 4 2 dlsz
IE [Ju; || = Zdﬂ‘)\zZm
VL v

where dy; = v, Gv;. The asymptotic approximation of the MISE
MISE(p) — MISE(0) = 2pn™'IE {(u;1, us)c + (w2, w) o} + p°IE w2

can be viewed as a quadratic polynomial in p. Hence, it is helpful to use a smoothing

parameter, for small p when

]E{<11117112>C + <11127111>C} < 0. (33)
At the optimum value

. —1IE {(ui,w) o + (uiz,w) o}
n IE [|uz ¢

p

14



then

MISE(p") — MISE(0) = I o wle <2u12’u1>c}>2.
n IE |l

A sufficient condition for smoothing to be advantageous, is that the ordered
eigenvectors are more and more “rough” (¢ < v = dy < d,). For real data sets, this
condition is often satisfied. It is to be noticed that the condition obtained here is
less restrictive than the one of Pezzulli & Silverman (1993) (see Silverman 1996 for

further explanations).

4.2.2 Approximation of a new curve

One can also perform the same type of expansion of the MISE for a new and in-
dependent centered sample path. That is to say, suppose we have constructed our
estimates from a sample of n curves and we then observe a new trajectory, inde-
pendent of the sample. By writing its coordinates, 8, in the B-splines basis and
then splitting them into two parts, signal plus noise, 8 = s + €, and separating its
covariance operator into signal and noise components

2

E(C) = I'+ 2¢'C
p
2 1
= Y 20P, + T4 (—) . (34)
- P P
We take into account that HC_lé - IH = HC_I((N} - C)H = O(k/p) is negligible

(Lemma 6.2). Hence, the eigenvalues <)\£Z)> of the covariance operator of the signal
7 satisfy:

2 1
Ay:A£Z)+U—+0<—>, v=1,...,q. (35)
p p
Writing
/S\pm = G&pvz,le;LthC/s\

= <Gf7p7 /S\>C Qé7p
gives the approximation of the coordinates of this new curve in the space spanned by
the lth eigenvector. GM%WH,;; is the H,;L—orthogonal projection onto the subspace

generated by V¢ ,. The following loss function
L(p) = S, — Pslc (36)

allows us to evaluate the approximation error for reconstructing the curve in the
subspace generated by vy, ,.

To examine the effect of smoothing, one must compare L(p) with £(0). For this,
define v the estimate of v, without smoothing and §,, the corresponding estimate of
the coordinates:

s, = VwWCs

= PsS+n'2(TRP,+P,RT;)S+---
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Writing 8,,, = v,¥,C8 and expanding it as follows
Spn = Sut {p(uV +vuy) +pn T (uv +vul,)} Cs (37)
gives the following approximation
Lip) ~ £00)+ T L (wv’ + vuy) C3 (38)
+2p <§n — Pys, (ugv' +vuy) Cs + n~1/? (u2v’ 4 vul, +uju; + uou)) C§>C}
The real term of interest in this equation is the last term, say 2W, since it is ad-

vantageous to smooth if, and only if, it is negative. In this case, L(p) will be a

decreasing function near zero. Using the fact that
8, —Pis=Pie+n*(TRP, + PRT,) (s +¢€)+ -
and 8, € and V are independent, we get:

W = pIE(Pe, (uyv' 4 vuy) Ce) ¢
—|—pn_1/21E (Pe, (u2v’' + vul, + usu + uju)) C€>C (39)
+pn~ I ((TRP + PTR)S, (uxv' + vu)) CS) ¢ -

Since IE TRP = 0 and [Eu; = [Eu;; = 0, the terms in pn_1/2 are zero and

2

W —p—d2. (10)
p

This expression is always negative and consequently, it is always better to smooth
to estimate a new curve. Nevertheless, we must keep in mind that expression (40)
is based on an approximation of the loss function £(p). One can notice as well that
W decreases when the number of design points p increases.

One can ask the question what is the ideal amount of smoothing to estimate
optimally this new curve. For this, we need to calculate IE |[(usv’ + Vu’z)C/s\H%j.

Consider for example
IE (1,v'C8, 1,v'Cs) g = I <()\TZA + 40P, 5, (\TA + L1)P, §>C

D <§ P,OAT, + LI)(AT,A + ?I)P@C

= u{P, (VATIA + A\E(TA + AT, + 1) P, B (55C) |
= A (N {PATIAP,) + SuP,)

which finally yields:

~ o? . d2y
(w2 + i) CEl g = <d§+3(xg Y
: ; A a2 1
+Ag>d;;+<Ag>>2z< a —)\))QZ 0(—)
ey e p



Hence, the ideal amount of smoothing may be expressed as follows:
1 o*d?

Np CRpY

p

*

p

(a>0,b>0). (41)

The more the data are rough, the larger the optimal smoothing parameter has

to be and the more the noise is dispersed, the more the data have to be smoothed.

5 Simulations

In previous sections, the links between the optimal smoothing parameter p* and the
number of curves n were studied. In this section we suggest to put the stress, by
means of simulations, on the relation between the number of knots, the number of
design points and the optimal smoothing parameter in the mean square error sense.

Artificial data sets were generated as follows:
Zi(t) = Cp; sin(1.5mt)+Cy; sin(2.57t)+Cs; sin(3.57t) i =1,...,n; t €[0,1], (42)

where {Cy;, Cy;, Csi,t = 1,...,n} are 3n pseudo random numbers indepedently and
normaly distributed with zero mean and variance o = 2, 03 = 1.3, 02 = 0.9 .
Clearly, the subspace FE, which contains the random process Z is of dimension three
and is generated by the set of functions { sin(1.57t),sin(2.57t), sin(3.57¢) }.
Afterwards, these curves were sampled uniformly and corrupted by adding a
white noise €, normally distributed with zero mean and unit variance, at the design

points. We finally observe the n random vectors belonging to R” :

YvZ'ZZZ'—I-(-ZZ'7 izl,...,n;

where Kj:Zi(]ﬁ)+cij,j:(),...,p—l.

We performed nine simulations by considering different values for n and p:
e n equal to ny =50, ny = 100 and n3 = 200.
e p equal to p; = 30, po =60 and p; = 120.

Estimates were constructed from the observations Y; using the method described
in section 2. We have decided to choose m = 2, that is to say the roughness penalty is
the L?[0, 1] norm of the second derivative, and v = 3 which means that curves where
approximated by cubic B-splines. Let’s denote by ?\i(,o, q, k) the rank constrained
estimation of the ith curve with smoothing parameter p in a g-dimensional subspace
of Sy, For k and p fixed, the optimal smoothing parameters ¢* and p* where chosen

by minimizing the true quadratic risk function:

Ry T 2
Ry(p.q) = Z};HYi(p,q,k)—Zi
=1

n

(43)
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k=8 | ¢ | p° |R(g.p) ]| R(¢g.0)
p=30 | 3 |5.0e06 | 0.057 0.107
p=60 | 3 |2.4e06 | 0.024 0.033
p=120 | 3 | 1.2¢:06 | 0.011 0.013

Table 1: Quadratic risk, k = 8 and n = 200.

k=16 | ¢ | p° | R(q,p") | R(g™.0)
p=30 | 3 [9.8¢:06 | 0.054 0.144
p=60 | 3 |5.1e-06| 0.024 0.039
p=120 | 3 | 1.2¢:06 | 0.011 0.014

Table 2: Quadratic risk, k = 16 and n = 50.

In order to be able to compare the efficiency of these smooth estimates with the
B-splines estimates obtained without using a smoothing paramater, we have chosen
another optimal dimension, ¢**, by minimizing Ry (0, ¢) with respect to ¢. Then, we
have compared Ry(p*,¢*) with R (0, ¢*™).

The analysis of the results of these simulations leads us to make the following

remarks which can give ideas for future work. It seems that:

e the number of knots k has no real effect, on these simulations, on the accuracy
of the smooth estimates. A too large k is compensated the roughness penalty

controlled by the smoothing parameter value (see Table 2 and Table 3).

o for small numbers of design points, the use of a smoothing parameter may
improve significantly the efficiency of these estimates (see Table 1, Table 2
and Table 3). On the other hand, if p is large, smoothing does not seem to be
justifed since it does not improve significantly the estimation. These remarks

agree with results of the previous section, in particular equation (40).

e smoothing gives more flexibility to the estimates and allows to compensate
a bad dimension choice (see figure 1). Actually, the true dimension is 3 but
an estimate in a subspace of dimension 4 can nearly attain the optimal risk

provided that p is well chosen.

k=24 | ¢ | p° | R(qg,p") | Rlg™,0)
p=30 | 3 [9.8¢-06 | 0.059 0.158
p=60 | 3 |2.4e-06 | 0.025 0.039
p=120 | 3 | 1.2¢:06 | 0.011 0.014

Table 3: Quadratic risk, k = 24 and n = 100.
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Figure 1: Risk function Ry with respect to p and dimension q (k= 24, p =30 and
n = 100).

e the optimal dimension ¢* doesn’t seem to be directly linked with the optimal
smoothing parameter. Actually, we notice that ¢* is always equal to ¢**. We
think that it may be possible to choose the dimension and the smoothing
parameter separately by using two different criteria. For instance, one could

choose ¢* in a first step, and then p*.

6 Proofs

6.1 Technical lemmas on B-splines

The following lemmas on B-splines will be stated since they will be needed later on

to prove results of convergence.

Lemma 6.1

B-splines are nonnegative functions which satisfy the following equation:
D Bty =1, Vtelo,1].
=1

Futhermore, the support of each B-spline By; is included in [6;,8;4,]
where 51 = :511 :0, 5j+V :]/(k—l—l), ]: 1,...,k, (Sk_|_1_|_l, = :5k+2u =1.
Lemma 6.2 Under assumption Ay and if & < p, we have:

o |Cyll = O(k™") and ||C;'|| = O(k)

= O(k)

‘(N]kH = O(k™) and H(N]:
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‘Ck - ékH =0(p™),
o |Gl = Ok 1),
where ||.|| is the usual matriz norm.

Proof of lemma 6.2

The first three points were demonstrated by Agarwall & Studden (1980) and Burman

(1991). They lie on compact support and regularity properties of splines functions.
On the other hand, each By; has m continuous derivatives for m < v and satisfies

(Schumaker 1981, theorem 4.22) :

sup |BU(1)] < ck™,
tefo,1]

where constant ¢ does not depend on k and ¢. Furthermore, each B-spline has a

support length of order k™' (lemma 6.1). Thus, the elements of matrix Gy, satisfy:

|MWA§AI

Therefore, applying theorem 1.19 of Chatelin (1983) to the symmetric matrix Gy

0 if [l —j]>v
O(k~1k*™)  else.

@?w\pywmw:{

we obtain:

|G| < sup Z Gl | = O(k2™1).

1=1,...,r =1

(|

We also need to bound the distance between the two matrices H,lg/; and C;l/Q

for "small” smoothing parameters p.
Lemma 6.3 For small p and for all k we have:

- am+41
|2 — o) = orp 15,

Proof of lemma 6.3

The proof of this lemma is based on perturbation theory of linear operators (Kato
1976, Chatelin 1983). Since the matrix Cy, is positive, its resolvent r(\) = (Cj, 4+ AI)™!
exists for A > 0 and we have (Kato, 1976 pp 282):

e 1P
cr= o L\/X) dA. (44)
™ Jo

Let’s consider ¥(\) = (H;; + )\I>_1 . The second resolvent equation gives us:

() - () = —r()(H - CF(N)
= —p r(NGF(), (15)
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and thus, using (44) and (45), we obtain:

d\

VA
Let Ag be the smallest eigenvalue of the matrices Cy, and H;; We have |[r(A)|| <

(Ao+A)~! and from lemma 6.2, we get Ay = O(k™'). Hence, using (46), we can bound:

+ oo
N o L / F(NGFN) (46)

s

HH1/2_0—1/2 _ r ‘/Jroo A)GRE() H
m 0
oo (A A
< P (/ Qo+ 1)~ dA) G|
a 0 \/X
= O(p K k), (47)
T (Xo + )7

since |G| = O(k¥™!) and / A < ONP = O,
0

VA

6.2 Asymptotic behaviour of the MISE for the mean func-
tion

Proof of theorem 3.1

Beginning with the study of the asymptotic behavior of the bias, denote by ik,

the least squares estimate of the mean function in the B-splines basis which can be

written:
~_1

fika(t) = by, C, By(t), (48)
where Bkn = %2?21 BZ Considering the expectation, (1), as follows:

~1 o~ 1

pr(t) = b Cp By(t), (49)
where gk = zla ] L 1(t;)Bg(t;), we have for the bias:
e =il < 2 (I — fnllge + i = Fikllzs) -

Under assumption A and condition k = o(p), one obtains from Agarwall & Studden
(1980) (theorem 3.1B):

1
ik =l = k—%ﬂ/ (D™ (1)) dt. (50)
0

Furthermore, if p = o(k~*™) it is possible to expand the "hat matrix” Hy ,:

H,,C, = (I+4pC;'Gy)™"

= T pC Gy ofph™"), (51)
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because we have HC;leH = O(k*™) from lemma 6.2. Using this expansion we get

1
Iy =l = [ 1068, = 8., B a
= (s, — IES;,,) Cy (IES, — IES},)
= IE/S\;M (H;WCk — I)/ Cy (H;WCk — I) IE/S\;m
= ,ozlE/s\;’nGkC;lelE/s\k’n + o(p* k™). (52)

It is easy to check that ||IES;,||> = O(k) and using lemma 6.2 again we have
HGkC?GkH = O(k*™~1). Therefore the bias is bounded above as follows:

e = Fipllze = O(k™*") + O(p*k*™).
Writing the variance term as follows:
nwm—m@:=m/ BL(t) dt
= 5,) Ci (5, —5,)
= [E <bk — bk,n> H,,C.H;, <gk — Bkn)

~ —~ 2
< |H,CrHg, || E ku — b,

(53)

Matrix Cy, is positive and definite, matrix Gy is nonnegative, and the smallest
eigenvalue of Cy, is of order k™' (lemma 6.2) whereas Gy has m null eigenvalues
since the derivative of order m of polynomials whose degree is less than m is null.
Therefore the smallest eigenvalue of H;; = C}, + pGy is of order k! and ||Hy || =
O(k). Thus

IHi, CoHy,|| < |[Ha|* |Cx|
— OOk
= O(k), (54)

-2
and it remains to bound IE ku — b,

. Let’s consider Z,, = 3" | Z; and €, =

n )
1 ., € and write:

n

p

N -1 _
by, — by = ];Z[Zn + €n]; Bi(1)).

i=1

2

By assumptions, we have IE(Z,) = E(€,) = 0, lEZnZ;1 = %I‘p, [Ee e, = =1
IEZ,e =0,

P

and  T[(Z, + €.)(Z, + €,)] = %(rp +o7T).

From equation (7) and assumption Ay on the regularity of Z one can check that

supte[O’l]{lE(Z(t)z} < 4+o00. Let’s define A = %(I‘p +0%I,) and D =max (4A;;). Then
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we have D = O(1/n). Furthermore,

k+v
~ ~ 12 1
E kum — bk = = Z Al] Z Bkz tl Bkz
p 1<1,5<p
D k+v
< = Z ZBm (1) Bri(t
p 1<, j<p =1
k+v k+v 1 P
Let’s erte — Z Z Bri(t1) Bri(1 Z ( Z Bri(1 ) (— Z Bki(t1)> . From
p
1<l]<p =1 =1 =1

lemma 6.1, we know that each B-spline has a support length of order £~! and there-
fore the cardinal of the set {l | Bg:(¢;) # 0} is of order pk~', and %Ele Bri(t;) =
O(k™'). Hence

k+v
— Z > Bui(t)Builty) = O(k™), (55)
1<l]<p =1
and we obtain:
~ ~ 2
£ Hbm bl = o e, (56)
Finally, we get the desired result by using (56), (54) and (53). O

6.3 Results on the covariance operator and its eigenvectors

Proof of lemma 3.3
Denote by z the B-splines estimation of the signal z deduced from Z. Using lemma

3.2, we get the following bound:

I E

np_rp?—l n

lE‘f

We only need to study IE ]\5“4,;2; let’s define b = L/p Ele Z(t;)Bg(t;) and write Z
into the B-splines basis to get:

- ~1~ -1 2 ?
Bz = E {/(blck Bk(t)> dt}
~ 114 —~p 2
Hck1 1w {pb}
2

< OB {E’E} ,

IA

using lemma 6.2. Let’s consider D) = sup,¢pq ] E[Z(t)"] < co. Tt yields
~f o~ 1
I {b b} = — IE(Z(t.) 2 (1) Z(1) Z(t4)) B(ta) Bi(ts)Bi(t.) Bi(1a)
f, eres
< DE > Bu(ta)Bi(ty)Bi(te) Bi(ta)

. Bi(ta)Bi(ts) > Bi(te)By(ta).

a,b=1,...,p c,d=1,...,p
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Then, using (55), we obtain:

k+v p p
1

% Y Bilta)Bi(ts) pzz 2 Bulta) Bults) = O(™),

p a,b=1,...,p =1 a=1 b=1

1Y 2
and IE {b/b} = O(k™?). Finally, we deduce from above that IE ]\5“4];2 = O(1), and
the desired result

an - Fp 2

Proof of lemma 3.4
Let’s define, for 1 = 1,...,n, ELE = 1/p2§:1[6i]jBk(t]‘) and s;, = (N]:g“ Let’s

write

I e
ElZ b - , /
(n széblﬁ) Z Z E([e];[e:]e)Br(t,;)Bi(te)
=1 7.=1
= - Z o*By(t;)Bi(t;)
P -
,
= Z¢.
P
Hence, we have IE(s;, ;5’ ) =c*/p (N]_l and the first part of the proof is obtained
readily by expressing I, qp 10 the basis (ej;), oy
Let’s consider dy = IE(e*) and define b, = l/p > 0_i[€];Bi(t;). By writing the
B-splines approximation of the white noise, say ¢, deduced from the vector €, we get

IE|[d]' = O(k*)E{b!b,}? and
1

I {bb}* = p_ Z TE{eacrceca}Bi(ta) Be(t)Bi(te) Bi(ta)
_ L (Bk( «) Bi(ta ZZ ta) Br(ts))”
p? — a=1 b#a
+ (;4) Z Z By (t.) Bi(ts)Bi(ts) Bi(ta)
a=1 btaq
S S Bt Bl Bt Bt
a=1 b#a

The first term is negligible since By(t,)'Bg(t,) < 1. Moreover, using the following
equality

—ZBk /Bk = tr((Njk)

and HékH = O(k™!) we finally get [E{b’b.}* = O(p~?) and the result. ]
Proof of theorem 3.5
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Since for all i = 1,...,n, we have [E(¢;) = 0 and ¢; is independent of Z;, it is easy to

check that IE fl,np =0 and E fsz = 0. Hence, we have:

ET,=I,+—P,.

Furthermore, since fl,np is the transposed of fgmp, these operators have the same

properties. Using (20) and the independence between Z and €, one can bound

E fl,np as follows:
_ ) ~112 2
IE‘ PP < B [|2]|72 IE |[€]| 7.
n
k
- ol 57
() 57
because I Haﬁ'ﬁ =0 <§> .
Let’s write now:
~ 2 o~ ~ jag =~ -
Iy — (Fp + %PkJ)) = <an - Fp) + <F1,np + FQ,W) (58)

o~ 2 o~
+ (Fe,np - O-_Pk,p> 9
p

and use lemmas 3.3, 3.4 and equation (57), in order to get

(olro- (e 5m)L) "0 G) (40 () ()

The result is obtained readily since the terms of order k/p are negligible. O
Proof of lemma 3.6
Let’s express fp in the basis (e;;) defined in (22):

i2 > IB(Z(t)Z(1))Bk(t;)Bi(t)

P S

~ - - ~ =
I, = Z aijer;  where [ay], . =A=C;

Li=1

~—1

C, .

Furthermore, we get from expansion (7) of the random function 7, that its

covariance may be expressed as follows:
P
I (Z(4)Z(t)) =Y Xidilt;)bi(tr).
=1

Let’s denote by %m the B-splines approximation of the function ¢; deduced from its
observation at the design points (¢;);. One can see easily that I', may be written

equivalently as follows:
o~ q o~ o~
Ly = ) Xidyi ® G (59)
=1
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Let’s notice that the functions gm, which are approximations of the eigenvectors
of I, are not a priori, the eigenvectors of the operator fp. By assumption, functions
¢; satisfy the regularity condition As, and so we get (theorem 3.1B, Agarwall &
Studden 1980):

|

Gi = Oyl o~ KD e (60)

2
12

= zq: y <¢z ® P — %m R gpﬂ»)

=1

H

= | Sx (6 ) oot de (- 5)

< zq: A
=1

The first part of the proof is obtained by applying (60) to the ¢ functions gm.

H

pr,i

Qbi - gp,i

(it + (6] )- (61)

By definition of the norm we have:

|Peo| = supdl < (Bl £ > 10 e = 1

Let’s define the vector f, whose elements are {< f, Bx; >, 7 =1,...,r}. The term

< (]B;W)f, f > may be expressed in a matrix form as follows:

< (ﬁk,p)fv f >= ﬂgé;lfk-

~—1

Since || f|l;= = 1, we have fify = O(k™!) and using lemma 6.2, we get: HCk
= O(1) and

O(k). Hence, ﬁ;w,

Proof of theorem 3.7
Bound (23) is obtained readily by applying theorem 3.5 and lemma 3.6.

We get the convergence of q/b\jn towards ¢; by using lemma 3.1 of Bosq (1991).
Indeed, it states that

—~ 22 ~
— O1n < ———||I'-T1, if g =1
‘% ¢1L2__(M—AQH¢_ ’ e
~ IN/2 ~
o : I'—T,| ifji>1
‘ Qb] Qb] 2 mm()\j_l — )\]‘, )\]‘ — )‘j-l-l) H b tJ o

and allows us to obtain readily the second result.
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Before embarking on the proof of theorem 3.8, we have to establish some nota-
tions. Let’s denote by /s\f the coordinates in the B-splines basis of the vectors q/b\]pn
These are obtained by applying H,lg/p2 to the eigenvectors, say {v% , j=1,...,q}, of
matrix Hi{;CkSanH}J; defined in (15). Let’s denote by {v%, j =1,...q} (respec-
tively {v;, 7 =1,...,q}) the first ¢ eigenvectors of Hl/QCkIE (S» )CkHI/2 (respec-
tively of the matrix C,lg/QlE (S») C1/2) These are obtained by applying C, Y2 46 the
coordinates of the eigenvectors of Fm,. Finally, let’s define the matrix S = IE(S,,).
Proof of theorem 3.8
This proof is split into two parts. At first we prove the convergence of v’  towards

v;. Then we show that the eigenfunctions q/b\]pn converge towards ¢;.

At first, let’s notice that
1
= — 2
% <n> (62)

by applying to the matrix Hk/kaS CkH ? the same arguments as in lemma 3.2.

Let’s compare now the deterministic matrlces Hk{p CkSCka{p and C;/2SC,1§/2. For
this, let’s write C}/’SCL? = C;/*C,SC,C;"* and define [ = ‘ H/’Cc,scH)? - ¢)/*sc)”
It yields

+ “C;/2sck“> . (63)

IEHH”?Cks CyHY? - HI/QCkSCkHl/Q

I = H (17 - c;) ewsem} + ¢)’sc, (1)) - ;%)

< HHl/z _ C—1/2

(|lcrscimy?

We have from lemma 6.3, HH,lg/p2 -C, 1/2 ‘
= Ok~ 1/2 and HC1/2

O(p k4™ +D/2) Furthermore, it is easy

= Ok~ 1/2) If we write

to check that HH,lg/p2

IA

C}j?sck‘
CkSCkHl/Q

(<G NS TAT
< P ISl |\

Y

it remains to bound ||S|| to get a bound for [. In order to do this, let’s write

IS = 1L/ 3y sisill < 1/nd iy [Esisil] = O(k) since || Esisi|| = O(k) by

=1
similar arguments as those used in the proof of theorem 3.1. Thus, it yields

|niiesom)? - sy

= O(pk*™). (64)

and thus
are distinct, for small k/p and large k (lemma 3.6 and theorem 3.7). Hence, the

Furthermore, the eigenvalues of C,lg/ QSCIIC/ ? are also the eigenvalues of fp,

eigenvectors of C,lgmsn(],lg/2 satisfy
o 1/2
(BIV,. = w[*) " = om™)+ 0 k), (65)
by applying lemma 3.1 of Bosq (1991) and relations (62) and (64).
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Let’s compare now the eigenfunctions {q/b\in, Jj=1,....q} of fn%p with those

A~

of fp, say {gm, J = 1,...,q}. We have ¢° (1) = (57)'Bi(t), t € [0,1], where
= H'* and gm,(t) = (C,;l/zvj)’Bk(t), t € 10,1]. Thus, we can bound

J T TTkyp Tim

o < 1P 1/2 —1/2
]E‘ qb;),n - qu,p 72 = IE HHk,/p V;,n - Ck / Vi Ck
< B{,y (m) - (I — ') v, )
+E{ (v, = v,) € e (v, — )
2B {(vi, - v,) ¢ ey (I - e ) v
by writing
1/2 —1/2 1/2 —1/2 —1/2
H/M, - O = (B - e ) v 4 o7 (v, = v).
Using relation (65) and lemmas 6.3 and 6.2, we finally get
R a2
(B3, -d].) = 0w+ oprn. ()

The end of the proof is obtained by applying again lemma 3.1 of Bosq (1991) to the

operators fp and I':

=O0(p™') + O(k™™),

12

gj,p - ij

(|
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