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1 Introduction

A well-known and commonly used tool to describe relations between func-
tional predictors and scalar reponses is the so-called Functional Linear Re-
gression introduced by Ramsay and Dalzell (1991) which has been studied
recently by numerous authors: see among others Marx and Eilers (1996),
Cardot et al. (1999), Cuevas et al. (2002), Müller and Stadtmüller (2005),
Cai and Hall (2006), Hall and Horowitz (2007) and Crambes, Kneip and
Sarda (2007) for estimation procedures as well as theoretical results. Linear
modelling is attractive from the point of view of interpretability. The draw-
back is that for some applications, the linear approach may not be flexible
enough to capture all the variability of the data. A way to increase the
flexibility is to replace the linear functional with a parameter-free unknown
functional leading to functional nonparametric regression models as intro-
duced by Ferraty and Vieu (2006): see for a review their recent monograph.
We propose here another generalization of the functional linear regression
model in which the functional coefficient may vary according to the values
of other (scalar) inputs.

For instance, in the example developed below, the aim is to predict the
maximum of ozone over a day (the response) explained by the curve of ozone
of the preceding day (functional predictor). Prediction of the peak of ozone
can be achieved by means of usual functional linear regression. However,
one can think that the ozone indicator also depends on other variables such
as the wind speed or concentration of other chemical components in the
atmosphere. In order to incorporate the effects of an additional variable
such as the maximum of hourly NO concentrations during a whole day we
present in section 4 an illustration of the ability of the varying-coefficient
model introduced below to predict ozone concentration one day ahead in
the city of Toulouse. Some comparisons with other approaches are made
according to the prediction skill.

We come now more precisely to the description of the context of our
study. We thus consider a regression problem in which the response Y is
a real valued random variable and the predictor X is functional, that is to
say the random variable X takes values in some space of functions. In the
following we assume that this space is the Hilbert space of square integrable
functions, say H = L2(T ), where T is a compact interval of R. Although
other (Hilbert) spaces of functions such as Sobolev spaces can be considered,
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this formalization has the advantage to provide a quite general presentation
of the problem.

We propose to consider a generalization of the functional linear regression
model which takes the form

Y = a(Z) +
∫
T
α(Z, t) X(t) dt + ε, (1)

where Z and ε are real random variables such that

IE (ε|Z) = 0, IE (Xε|Z) = 0 and V ar(ε|Z) = σ2.

given a value z of Z, our aim is to estimate the functional coefficient α(z, .) =
αz(.) belonging to H and the mean parameter a(z) = az. In order to simplify
further developments, we choose to consider only an univariate Z noting that
the generalization to a multivariate Z is straightforward.

The main difference between model (1) and the functional linear re-
gression introduced by Ramsay and Dalzell (1991) is that the regression
function α is now allowed to vary with Z taking into account nonparamet-
rically this new information. Model (1) can be seen as a direct extension of
the varying-coefficient regression model proposed by Hastie and Tibshirani
(1993), considering functions instead of vectors. Let us note that model (1)
includes more specific models which appear to be particular cases:

• If α(Z, t) = α0(t) we get an additive model, separating the effects of
Z and X on Y, similar to the one introduced by Damon and Guillas
(2002).

• If α(Z, t) = α0(t) and if moreover a(Z) = a0, then we come back to
the functional linear regression model.

• If X(t) = 1, the regression takes the form a(Z) +
∫
T α(Z, t)dt which is

a kind of nonparametric regression model with Z as the predictor and
a time-varying effect.

• If X(t) = 1 and α(Z, t) = α1(Z), we have the usual nonparametric
model of regression with Z as a predictor.

Let us introduce some notations. In the following we denote by 〈φ, ψ〉 =∫
T φ(t)ψ(t)dt the usual inner product in H and by ‖φ‖ the induced norm.

Let us assume at first that X has a finite second conditional moment:
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IE(‖X‖2|Z = z) < +∞. Then we consider the conditional expectations
of X and Y denoted by ηz = IE(X|Z = z) and by µz = IE(Y |Z = z).

One can easily check that

Y − µz =
∫
α(z, t)(X(t)− ηz(t))dt + ε,

and, taking expectations given Z = z, this leads to the following moment
equation

Γz αz = ∆z, (2)

where Γz is the conditional covariance operator

Γz = IE (〈X − ηz, .〉(X − ηz)|Z = z) ,

and ∆z the conditional cross-covariance operator

∆z = IE ((X − ηz)(Y − µz)|Z = z) .

We note at this point that equations (1) and (2) define an ill-posed
problem with the consequence that parameter αz is not always identifiable.
As a matter of fact, it can be seen from (2) that the functional param-
eter αz may be identified only in (Ker(Γz))⊥, so that we suppose from
now on, without loss of generality, that Ker(Γz) is reduced to zero. Since
IE(‖X‖2|Z = z) < +∞, the operator Γz is compact and has no continuous
inverse. As a consequence, the existence of a unique solution to (1)-(2) is
not always insured unless the following necessary and sufficient condition
holds (see Cardot et al., 2003, for a justification in the unconditional case).

Condition 1. For every z, the random variables X and Y satisfies

+∞∑
j=1

〈∆z, vj(z)〉2

λj(z)2
< +∞,

where (λj(z), vj(z))j are the eigenelements of Γz, Γzvj(z) = λj(z) vj(z),
with λ1(z) ≥ λ2(z) ≥ · · · ≥ 0 and v1(z), v2(z), · · · form an orthonormal
basis of L2(T ). Under Condition 1, there is a unique solution to (1)-(2) in
(Ker(Γz))⊥ given by

αz =
+∞∑
j=1

〈∆z, vj(z)〉
λj(z)

vj(z). (3)
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Consider now a sample (Xi, Zi, Yi), i = 1, . . . , n of independent and iden-
tically distributed realizations of (X,Z, Y ). Assuming implicitly that Con-
dition 1 is fullfilled, we propose in section 2 estimation procedures for α
based either on a regression on conditional functional principal components
or on a penalized least squares B-splines expansion. Some consistency re-
sults are also given. Practical aspects of implementation of these estimators
are discussed in section 3. In section 4, we show the benefits of using a
varying-coefficient model in order to predict pollution events in the area of
Toulouse. Comparison of prediction skills are made with other functional
approaches that have already been proposed for such studies. Finally, sec-
tion 5 is devoted to concluding remarks and possible extensions of this work.
Proofs are gathered in an Appendix.

2 Estimation of the functional coefficient

2.1 Conditional Functional Principal Components Regres-

sion

Borrowing ideas from Cardot (2007) on conditional functional principal com-
ponents analysis, we can build consistent estimators of the two conditional
operators Γz and ∆z with kernel smoothers. For that purpose let us intro-
duce the following weights

wi(z, h) =
K ((Zi − z)/h)
n∑
i=1

K ((Zi − z)/h)

, (4)

where the kernel K is a positive, symmetric around zero and bounded func-
tion with compact support and h = hn > 0 is a generic bandwidth whose
asymptotic behavior will be described later.

Let us define the estimator η̂z of ηz as follows

η̂z =
n∑
i=1

wi(z, hx)Xi , (5)

where hx is a bandwidth and consider the following estimator Γ̂z of Γz

Γ̂z =
n∑
i=1

wi(z, h1)〈Xi − η̂z, .〉 (Xi − η̂z) , (6)

where again h1 is a specific bandwidth.
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Consider now the cross covariance operator ∆z, and its estimator defined
as follows

∆̂z =
n∑
i=1

wi(z, h2) (Xi − η̂z) (Yi − µ̂z) , (7)

where µ̂z is the classical kernel regression estimator of µ(z), defined by

µ̂z =
n∑
i=1

wi(z, hy)Yi , (8)

using a bandwidth hy.

Note that for defining the above estimators we have always taken the
same kernel. We could have considered different kernels at the expense of
heavy additional notations and a poor gain (in terms of performance of the
estimators) since it is well known that in nonparametric kernel estimation
the most important tuning parameter is the bandwidth value.

Considering now a positive integer Kn, the functional principal compo-
nents regression consists, in this context, in expanding an estimator of αz
in the Kn dimensional sub-space of H spanned by the Kn eigenfunctions,
v̂1(z, .), . . . , v̂Kn(z, .) of Γ̂z associated to the largest eigenvalues, λ̂1(z) ≥
. . . ≥ λ̂Kn(z) ≥ 0.

Introducing now the generalized inverse of Γ̂z in the space spanned by
its first Kn eigenfunctions,

Γ̂†z =
Kn∑
j=1

v̂j(z)⊗ v̂j(z)
λ̂j(z)

, (9)

and inverting equation (2) lead to the following CFPCR estimator of αz,

α̂z,PCR = Γ̂†z∆̂z

=
Kn∑
j=1

< v̂j(z), ∆̂z > v̂j(z)

λ̂j
, (10)

which is analogous to (3). Equation (10) clearly shows that this estimator
is a direct generalization of the principal components regression estimator
studied in Cardot et al. (1999), considering the conditional covariance op-
erators instead of the empirical ones.

6



2.2 Penalized local least squares splines

For notation convenience we assume, from now on and whithout loss of
generality, that T = [0, 1]. It is quite easy to show that αz defined in (1) is
solution to the minimization problem

min
βz∈H

IE

((
Y − µz −

∫ 1

0
βz(t)(X − ηz(t))dt

)2

|Z = z

)
. (11)

The penalized local least squares estimator is based on an expansion
of the functional coefficient in B-splines basis which minimizes a penalized
empirical counterpart of (11). For a fixed non negative integer q and a given
non negative integer k = kn depending on the sample size n, we denote by
Sk,q the set of spline functions defined on [0, 1] with order q and k equispaced
interior knots (de Boor, 1978). A function s in Sk,q is a polynomial of degree
q on each subinterval defined by the knots and is q − 1 times continuously
differentiable on [0, 1]. We consider a basis of Sk,q composed of B-splines,
{Bk,j , j = 1, . . . , k + q} , and define Bk = (Bk,1, . . . , Bk,k+q).

Thus, we look for θz ∈ Rk+q minimizing the following penalized criterion

min
θ∈Rk+q

n∑
i=1

wi(z, h)

Yi − µ̂z − q+k∑
j=1

< θjBk,j , Xi − η̂z >

2

+ `
∥∥∥B(m)′

k θ
∥∥∥2
,

(12)
where ` is a smoothing parameter. The first term in (12) is a usual kernel
nonparametric estimator of the conditional expectation (11) where βz has
been replaced by a spline function. It is well known however that the min-
imizer of this first term would not be a consistent estimator. Indeed, the
eigenvalues of the matrix Ĉz defined below decreases rapidly to zero when
k = kn grows up. Mimicing what is usually done for ill-posed inverse prob-
lems, the solution is regularized by the addition of a penalty term in (12).
The penalty is proportional to the norm of a derivative of the functional pa-
rameter which means that ` controls the trade-off between data adjustments
and regularity of the solution. The estimator defined by (12) is similar to
the one introduced in Cardot et al. (2003) with the difference that in our
case we are estimating the solution of the conditional expectation (11) while
Cardot et al. (2003) consider the unconditioned counterpart of (11). This
results in considering in our case a weighted sum of squares in (12).
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Now, the solution θ̂z of (12) is given by

θ̂z = Ĉ−1
z,` b̂z =

(
Ĉz + `Gk

)−1
b̂z, (13)

where Ĉz is the (q + k) × (q + k) matrix with elements
∑n

i=1wi(z, h) <
Bk,j , Xi − η̂z >< Bk,l, Xi − η̂z >=< Γ̂zBk,j , Bk,l >, b̂z is the vector in Rq+k

with elements
∑n

i=1wi(z, h) < Bk,j , Xi > (Yi− µ̂z) = ∆̂zBk,j and where Gk

is the (q+ k)× (q+ k) matrix with elements < B
(m)
k,j , B

(m)
k,l >. Note that for

this approach Γ̂z and ∆̂z are built using the same bandwidth h1 = h2 = h.
Finally, the penalized splines estimator of α is

α̂z,PS = B′kθ̂z. (14)

2.3 Some consistency properties

We study the performance of estimators α̂z,PCR and α̂z,PS in terms of predic-
tion error. This leads to consider the criterion error ‖.‖z defined as follows
‖β‖2z = 〈Γzβ, β〉, and it is easily seen (see Cardot and Sarda, 2005, for a
discussion) that this criterion is a conditional prediction error,

‖β‖2z = IE
(
〈X,β〉2|Z = z

)
.

Thus, we are looking for the behavior of the prediction errors ‖α̂z,PCR−αz‖z
and ‖α̂z,PS −αz‖z for large values of the sample size n: we show that these
quantities converge to zero respectively almost surely and in probability.

Theorem 2.1 Under assumptions given in the appendix, we have that, as
n tends to infinity

‖αz − α̂z,PCR‖z −→ 0 , a.s. (15)

and

‖αz − α̂z,PS‖2z −→ 0 , in probability. (16)

The conditions (given in the Appendix) in theorem above involve Lipschitz
regularity assumptions on the various conditional moments. They also im-
ply, for the principal components regression estimator, that the dimension
Kn must tend slowly enough to infinity with rates depending on the behavior
of the eigenvalues as n increases.

As far as the penalized estimator is concerned, one must assume that
the linear functional is regular and the smoothing parameter value ` must
not tend too rapidly to zero. On the other hand, one can notice that there
are no strong conditions on the eigenvalues.
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3 Some comments on practical implementation

3.1 Discretized data

In practice one observes discretized data, that is to say a sample of n vectors

Xi = (Xi(ti1), Xi(ti2), . . . , Xi(tipi)) , i = 1, . . . , n, (17)

where the discretization points are not necessarily equispaced but are just
supposed to satisfy 0 ≤ ti1 < ti2 < · · · < tipi ≤ 1.

There are several methods proposed in the literature to deal with the
discretization issue which depend on the sparsity of the design points. If the
grid of points is sufficiently dense, one can perform a basis functions expan-
sion of the trajectories (B-splines, wavelets, etc) and then operate on the
coordinates instead of the observed data (see Ramsay and Silverman, 2005).
On the other hand for sparse designs direct estimation procedures of the
covariance function can be performed using kernel smoothers (Staniswalis
and Lee, 1998) or local polynomials (Yao et al. 2005). Basis expansion are
also considered by James et al. (2000) with estimation procedures relying on
the EM algorithm. Note that for sparse designs computational procedures
are definitely heavier.

3.2 Choosing values for the tuning parameters

The first step of the estimation procedure consists in the estimation of the
conditional expectations of X and Y given z by kernel smoothers with
smoothing parameters hx and hy as defined in section 2. The estimator
of µz is clearly an usual nonparametric regression kernel estimator and thus
the choice of hy can be performed by data-driven selectors of the bandwidth
such as cross-validation (see Härdle, 1990). The specificity of the estimation
of ηz is that the output of the regression is a curve: the cross-validation
criterion can be adapted to this situation in order to select the bandwidth
hx in the kernel estimator η̂z as follows (see Hart and Wehrly, 1993)

CVx(hx) =
n∑
i=1

∫
T

(
Xi(t)− η̂−iZi

(t)
)2
dt,

where η̂−iZi
(t) is the leave-one-out estimator (based on the sub-sample in

which the observation (Xi, Zi) has been eliminated) evaluated at point Zi.
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Then, the CFPCR estimator is tuned by three parameters, the band-
widths h1, h2 and the dimension Kn. They all act as smoothing parameters
even if they have really different roles. One needs to choose a reasonable
values for the bandwidths h1 and h2 which controls the ”dependency” be-
tween Y , X and Z and the dimension parameter Kn which controls the
”smoothness” of the estimator of α. Again a cross-validation criterion is
a natural candidate to provide a data-driven selection procedure for these
tuning parameters, minimizing

CVCFPCR(h1, h2,Kn) =
1
n

n∑
i=1

(
Yi − µ̂Zi− < α̂−iZi

, Xi − η̂Zi >
)2
. (18)

where α̂−izi
is the estimator of αz obtained by the CFPCR procedure once

the observation (Xi, Zi, Yi) has been left out the initial sample.
Now the Penalized Splines estimator is essentially controled by two tun-

ing parameters, ` for the smoothness of the estimator and the bandwidth
h. Indeed, the degree of the Splines functions m takes generally a value
between 2 and 4. It is also known that the number of knots k plays a less
important role than the parameter ` which controls the smoothness of the
estimator provided that one considers reasonably large values of k (Eilers
and Marx, 1996, Besse et al., 1997). Thus, values of ` and the bandwidth h
can be chosen by minimizing the following cross-validation criterion

CVPS(h, `) =
1
n

n∑
i=1

(
Yi − µ̂Zi− < α̂−iZi,PS

, Xi − η̂Zi >
)2
. (19)

The selection procedures described above are operational but appear to
be quite expensive from a computational point of view. Looking for efficient
approximations to these criterions certainly deserves further investigation.

4 Ozone pollution forecasting

The prediction of pollution events in the atmosphere is of great interest in
the scientific community. Ozone creation is the result of complex chemi-
cal processes and due to the complexity of the phenomenon non linear and
nonparametric statistical approaches have been widely used to give predic-
tions of alerts. These statistical models are generally based on threshold
time series (Mélard and Roy, 1988), generalized additive models (Davis and
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Speckman, 1999), regression trees (Ghattas, 1999) or neural networks (Yi
and Prybutok 1996, Gardner and Dorling 1999).

We have data that are collected in Toulouse by the ORAMIP (Observa-
toire de l’air de la Région Midi-Pyrénées) air quality authority for the Midi-
Pyrénées area in South West of France. A detailed description of the data
can be found in Aneiros et al. (2004). They consist in hourly measurements
of five variables, ozone concentration (O3), NO concentration (NO) and NO2

concentration (NO2), wind speed (WS), and wind direction (WD), during
the summers (15th May - 15th September) of the years 1997-2000. Eliminat-
ing missing data due to transmission problems or measurement apparatus
failures we finally get a sample of n=474 days with hourly measurements
at times points t1 < . . . < t24. We aim at forecasting daily maximum O3

concentrations with the help of the functional covariates measured the day
before until 5 pm. For day i, the response is the maximum of the observed
concentration in ozone during day i, O3,i(t), and is defined by

Yi = max
j=1,2,...,24

O3,i(tj) (20)

whereas the covariates are the 24 hourly measurements of the five variables
above mentioned for time t varying from t=6pm of day i − 2 to t=5pm of
day i− 1.

Our data are clearly functional even if they are discretized versions of the
continuous underlying phenomenon. Let us fist note that not much work
has taken this important feature into account in such a context. Damon
and Guillas (2002) proposes linear functional autoregressive models includ-
ing covariates and Cardot et al. (2007) extended the functional linear model
with several functional covariates. From a completely nonparametric point
of view, Aneiros et al. (2004) have built nonparametric functional predic-
tors that can take many functional covariates into account extending to
multivariate functional data the procedures developed in Ferraty and Vieu
(2006).

The varying functional linear model which allows the functional coeffi-
cient of regression to vary nonparametrically according to another covariate
of interest seems to be a good comprise between completely nonparametric
approaches and linear functional models. These statistical models can be
compared for the prediction of the maximum of O3 concentration one day
ahead in the city of Toulouse.
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We split the original data in a learning and a test sample as in Aneiros et
al. (2004) and Cardot et al. (2007) in order to be able to provide a compari-
son of the different approaches for predicting maximum ozone concentration
one day ahead. The original sample is split randomly in a test sample, say
IT , composed of nT = 142 observations and a learning sample, say IL, with
nL = 332 observations.

Ozone prediction with varying-coefficient functional linear re-

gression models

As noticed in Cardot et al (2007) the most informative functional covariate
for predicting maximum O3 one day ahead (day i+1) at 5pm is the ozone
curve measured for time t varying from t=6pm of day i−1 to t=5pm of day
i. This functional covariate is denoted by Xi from now on and will be the
functional covariate in our varying-coefficient functional linear models. Note
that we only have discrete trajectories of ozone evolution, with equispaced
design points. For computational facilities, we have considered the penalized
spline estimator and expand the functional coefficients in B-splines basis of
order q = 3 with k = 6 equispaced interior knots. Then, estimators are
computed by minimizing criterion (12) where all integrals are approximated
with quadrature rules. We consider as potential real additional covariates
Z the maximum values between t=6pm of day i − 1 to t=5pm of day i as
well as the value at time t=5pm of the available functional covariates. For
each candidate Z the smoothing parameters are selected by minimizing the
cross validation criterion on the learning sample defined in (19) and then the
best covariate Z is chosen by considering the model whose cross-validation
prediction error in the learning sample is minimum.

We finally get, according to this model selection procedure, a varying
coefficient model with Zi = maxt NO(t) where t varies from t=6pm of day
i− 1 to t=5pm of day i. The smoothing parameters values are `CV = 0.035
and hCV = 0.2.

Comparison with other functional approaches

We first consider for comparison two naive models which consists in predict-
ing an observation of the test sample by the empirical mean in the learning
sample (model M0) and predicting a new value at day i by the observed value

12



of maximum ozone concentration at day i − 1 (model named persistency).
As in Aneiros et al. (2004), these naive predictors serve as benchmarks.

As far as the functional linear model is concerned, Cardot et al (2007)
consider both the univariate case, i.e. with only one functional covariate,
and the multivariate case where an additive functional linear model are
proposed. They note that the best prediction in the univariate case (denoted
by FLM) was obtained when considering the ozone curves of the preceding
days as covariate and that prediction skill could be improved by considering
a multivariate functional linear model (say MFLM) with O3, NO, N2 and
WS curves of the preceding day as covariates.

Dealing now with nonparametric functional predictors, the best model
for prediction found by Aneiros et al. (2004) is an additive model whose
covariates are the observed curves of O3, NO, WS and WD of the preceding
day. This model is denoted by FAM.

The criterions used on the test sample to compare the skill of the different
models are based on the quadratic errors

E1(i) =

(
Yi − Ŷi

)2

VarIT (Y )
,

where Ŷi is the prediction given by the model and VarIT (Y ) is the empirical
variance of Yi in the test sample, as well as the absolute errors

E2(i) =
∣∣∣Yi − Ŷi∣∣∣ .

Prediction errors for the different models discussed before are given in Table
(1).

The first interesting thing to be noticed is that the two naive mod-
els (namely M0 and M ′0) can be considerably improved by incorporating
additional information. Then, one can note that among the functional ap-
proaches, the varying coefficient model gives the best prediction errors ac-
cording to the quadratic error criterion even if it does not take into account
all the potential covariates as this is the case for the MFLM and FAM. This
means that even if it is apparently less flexible it allows to take into account
interactions processes between O3 creation and NO level and in some ways
threshold effects by allowing the functional regression coefficient to vary in a
non linear way with the NO concentration. These first results are encourag-
ing and should lead to further developments, aiming at understanding what
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Model Quadratic Error Absolute Error

M0 0.995 18.71
Persistency 0.917 17.44

FLM 0.416 12.62
MFLM 0.391 11.87
FAM 0.378 11.40

VFLM 0.376 11.40

Table 1: Mean value of the criterion errors on the test sample for the different
predictors.

can be the chemical process in action when ozone concentration levels are
high.

5 Concluding remarks

The model presented in this paper allows to extend functional linear re-
gression by taking into account the effect of an additional variable. The
estimators presented can be implemented in statistical softwares quite eas-
ily, have good asymptotic behaviors and can be useful for empirical studies
as seen for the ozone prediction. One can imagine many extensions to this
study which are beyond the scope of this paper.

At first let us note that one could consider a different estimation ap-
proach by expanding directly function αz(t) in a two-dimensional splines
basis and thus minimizing a penalized least squares criterion. This leads
to a tensor product splines estimator: we refer for instance to Eilers and
Marx (2003) or Ramsay and Silverman (2005) for introducing tensor prod-
uct splines estimators in a slightly different context than the one considered
here.

A natural extension to consider are Generalized Linear Models to cover
for instance the situation where the response Y is binary. A conditional
version of the procedure proposed by Cardot and Sarda (2005) and based
on splines approximation can be considered. It is also possible to derive
conditional principal components regression estimators in this context by
adapting ideas from Müller and Stadtmüller (2005).

Model (1) can also be extended to a multivariate framework. Firstly one
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can consider a vectorial variable Z instead of a real one. Estimators proposed
here can be extended readily to such a multivariate framework by considering
multivariate kernel smoothers. These approaches will clearly suffer from
the curse of dimensionality and developing dimension reduction approaches
would be of real interest in such a context. It would also be interesting to
study the situation in which one has several curves as predictors (as it is
the case in several applications) and modify our model in an additive model
with functional covariates. Then, specific estimation procedures would need
to be developed: one can think for instance at the functional version of the
algorithm based on PLS introduced by Hastie and Tibshirani (1993).

There are some situations in which the (functional) variables are mea-
sured with errors due for instance to the measurement apparatus. In such
situations, estimation procedures that do not take into account measure-
ment errors may fail to give accurate and even consistent estimators . One
can adopt several strategies to make the estimation more efficient. The
most natural, but maybe also the most time consuming, is to simply de-
noise the predictive curves Xi by using a common smoother (kernel, splines,
...). This leads to consider new curves X̃i that are smooth and then apply
the estimation procedures as defined above with Xi replaced by X̃i. An-
other possibility is to correct directly the estimators defined in (14) in order
to take into account measurement errors. Such correction procedures are
proposed in Crambes et al. (2007) and they consist in adding to the matrix
Ĉz,` a denoising term proportional to the variance of the error-in-variable
term. While this procedure can certainly be applied for ozone forecasting
with minor modifications (in that case this would lead to correct in some way
the variables Zi), further theoretical studies on the behavior of the corrected
estimators have to be done.

Finally a quite important problem in practice is to test the influence of
a covariate Z on the regression function αz, that is to say to consider the
null hypothesis

H0 : α(z, t) = α(t), ∀z .

We believe it is possible to develop a test procedure based on permutations
similar to those proposed in Cardot et al. (2004) . This issue is the subject
of works in progress.
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Appendix : proofs

Assumptions and preliminary results

We first present some preliminary results on the conditional mean of X and
Y given Z = z, where z is a fixed point of R belonging to the support of the
distribution of Z. We also give some asymptotic results for the estimators
of the conditional covariance and cross-covariance operators. The variables
X, Y and Z are assumed to satisfy the following conditions.

(H.1) ‖X‖ ≤ C1 < +∞, a.s.

(H.2) |Y | ≤ C2 < +∞, a.s.

(H.3) The distribution of the variable Z is absolutely continuous with respect
to the Lebesgue measure on R and its density fZ is such that fZ(z) > 0 and
is Lipschitz continuous with coefficient τz in a neighborhood of z.

As usual in nonparametric estimation the underlying functions are supposed
to satisfy some regularity condition. Let us define the second order moment
functions:

r1(z, s, t) = IE(X(s)X(t)|Z = z) and r2(z, s) = IE(X(s)Y |Z = z).

(H.4) The functions µ, η, r1(z, ., .) and r2(z, .) are Lipschitz continuous in a
neighborhood of z with respective coefficients τy, τx, τ1 and τ2.

Let h be one of the bandwidth hx, hy, h1 or h2. We assume that

h −→ 0 and log n/(nh) −→ 0 as n tends to infinity.

The estimator of the conditional mean of Y given Z = z is the classical
kernel one and we have (see e.g. Sarda and Vieu, 2000)

|µz − µ̂z| = O(hτyy ) +O

(
log n
nhy

)1/2

, a.s. (21)

From Cardot (2007) we can deduce the following results
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‖ηz − η̂z‖ = O(hτxx ) +O

(
log n
nhx

)1/2

, a.s, (22)

and under Lipschitz conditions (H.4), we have∥∥∥Γz − Γ̂z
∥∥∥ = O(hτ11 ) +O(hτxx ) +O

(
log n

n min(h1, hx)

)1/2

, a.s., (23)

where ‖.‖ stands for the Hilbert-Schmidt norm for operators. Using the
same technics as in Cardot (2007), we can also show that∥∥∥∆z − ∆̂z

∥∥∥ = O(hτ22 ) +O(hτxx ) +O(hτyy ) +O

(
log n

n min(h2, hx, hy)

)1/2

, a.s.

Asymptotic properties of the conditional principal compo-

nents regression estimator

Let us first have a look at the existence of the principal components regres-
sion estimator α̂z,PCR which is uniquely determined provided that the first
Kn eigenvalues are distinct and λ̂Kn(z) is strictly positive, the latter con-
dition ensuring the existence of the generalized inverse Γ̂†z. By well known
inequalities for positive compact operators, we have

|λKn(z)− λ̂Kn(z)| ≤ ‖Γz − Γ̂z‖, (24)

and thus, by (23),

λ̂Kn(z) = λKn(z) + o(λKn(z)), a.s., (25)

if
1

λKn(z)

(
hτ11 + hτxx +

(
log n

n min(h1, hx)

)1/2
)
→ 0,

as n tends to infinity, noting that λKn(z) > 0. Then, equation (25) means
that λ̂Kn(z) is strictly positive on an event whose probability tends to one
as n tends to infinity and this ensures existence of Γ̂†z and α̂z,PCR. Assuming
moreover that the eigenvalues of Γz are distinct we get uniqueness of the
solution.
Let us define ΠKn(z) =

∑Kn
j=1 vj(z) ⊗ vj(z): it is the projection onto the

eigenspace generated by the first Kn eigenfunctions of Γz. With (H.1), we
have

‖αz − α̂z,PCR‖z ≤ C1 (‖αz −ΠKnαz‖+ ‖ΠKnαz − α̂z,PCR‖) , (26)
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where C1 is a strictly positive constant. We first get using straighforward
arguments

‖αz −ΠKnαz‖
2 ≤

∑
j>Kn

< αz, vj(z) >2, (27)

which proves that the approximation error due to the projection ΠKnαz

tends to zero when Kn tends to infinity.
The second part of the demonstration is based on Lemma 5.1 in Cardot et
al. (1999) which states that

‖ΠKnαz − α̂z,PCR‖ ≤ γn
∥∥∥Γz − Γ̂z

∥∥∥+
1

λ̂Kn(z)

∥∥∥∆z − ∆̂z

∥∥∥ , (28)

where γn is defined by

γn = ‖∆z‖

 1

λ̂Kn(z)λKn(z)
+ 2

 1

λ̂Kn(z)
+

1
λKn(z)

Kn∑
j=1

aj

 (29)

with {
a1 = 2

√
2(λ1(z)− λ2(z))−1,

aj = 2
√

2 [min(λj−1(z)− λj(z), λj(z)− λj+1(z))]−1 , j > 1.

Let us study in details the first term in γn, the other upper bounds being
obtained with similar manipulations.
Using inequality (24), we get with (23),

λKn(z)

λ̂Kn(z)
− 1 = O(hτ11 ) +O(hτxx ) +O

(
log n

n min(h1, hx)

)1/2

, a.s. (30)

and

1

λ̂Kn(z)λKn(z)
=

1
λ2
Kn

(z)
+ o

(
1

λ2
Kn

(z)

)
, a.s. (31)

Then,

‖Γz−bΓz‖bλKn (z)λKn (z)

= 1
λ2

Kn
(z)

(
O(hτ11 ) +O(hτxx ) +O

(
logn

n min(h1,hx)

)1/2
)
, a.s. , (32)

which ensures the almost sure converge towards zero of this term provided

that 1
λ2

Kn
(z)

(
hτ11 + hτxx +

(
logn

n min(h1,hx)

)1/2
)
→ 0, as n tends to infinity. Re-

peating the same procedure for the other terms in (28) and (29), we get
as n tends to infinity ‖αz − α̂z,PCR‖z → 0 , a.s. when the following set of
assumptions is fulfilled
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• hτ11

λ2
Kn

(z)
→ 0,

hτxx
λ2
Kn

(z)
→ 0,

log n
λ2
Kn

(z) nmin(h1, hx)
→ 0,

•
∑Kn

j ajh
τ1
1

λKn(z)
→ 0,

∑Kn
j ajh

τx
x

λKn(z)
→ 0,

log n
∑Kn

j aj

λKn(z) nmin(h1, hx)
→ 0,

• hτ22

λKn(z)
→ 0,

h
τy
y

λKn(z)
→ 0,

log n
λKn(z) nmin(h2, hy)

→ 0,

These conditions mean that Kn must tend slowly enough to infinity to get
consistent estimators, depending on the regularity of the various conditional
moments and the shape of the eigenvalues. On the other hand the different

bandwidths have to be large enough to ensure that
hτ

λ2
Kn

(z)
→ 0.

Asymptotic properties of the weighted penalized splines esti-

mator

The behavior of the error of prediction for the estimator α depends on
regularity assumption on αz: for some integer p′, the function αz is assumed
to have p′ derivatives with α

(p′)
z satisfying

(H.5) |α(p′)
z (y1)− α(p′)

z (y2)| ≤ C3|y1 − y2|ν , C3 > 0, ν ∈ [0, 1].

We note p = p′ + ν and assume that q ≥ p. From Cardot (2002), we can
deduce that

C6k
−1‖u‖2 ≤ u′Gku, u ∈ K(Gk)⊥,

and
u′Gku ≤ C7k

2m−1‖u‖2, u ∈ Rq+k,

where K(Gk) is the null space of Gk and C6 and C7 are two positive con-
stants.
Define the matrix Cz as the (q + k) × (q + k) matrix with elements <

ΓzBk,j , Bk,l > and Cz,` = Cz + `Gk. Then using the same developments as
in Lemma 6.2 in Cardot, Ferraty and Sarda (2003) we can show that the
eigenvalues of Cz,` lie between C7`k

−1 and C8k
−1 and that

‖Ĉz,` −Cz,`‖ = OP (k−1(hτ1 + hτxx + (log n/(n min(h, hx)))1/2)).

From this last result and taking ` = o(hτ1 +hτxx +(log n/(n min(h, hx)))1/2),
we get that Ĉz,` is non singular except on an event whose probability tends to
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zero as n tends to infinity and this allows us to deduce that a unique solution
α̂z,PS to the problem (12) exists except on an event whose probability goes
to zero as n tends to infty.
Now, let us consider the following quantity

Λz,`(a)

= E

(
< a,X − ηz > (Y − µz)−

< a,X − ηz >2

2
|Z = z

)
− 1

2
`‖a(m)‖2,

and its empirical version
Λ̂z,`(a)

=
n∑
i=1

wi(z, h)
(
< a,Xi − η̂z >)(Yi − µ̂z)−

< a,Xi >
2

2
)
)
− 1

2
`‖a(m)‖2.

Note that the solution α̂z,PS of (12) also satisfies

α̂z,PS = arg max
β∈Skq

Λ̂z,l(β).

With the same arguments as in Lemma 5.1 in Cardot and Sarda (2005),
one can show that under the assumptions outlined above and if moreover
`−1k−2p + `k2(m−p) = O(1) there is a unique α̃z,PS ∈ Skq such that

α̃z,PS = arg max
β∈Skq

Λz,`(β),

and that

‖αz − α̃z,PS‖2z = O(k−2p) +O(`k2(m−p)) +O(`). (33)

Let us introduce β ∈ Skq and write β(t) =
∑q+k

j=1 θjBkj(t) = θ′Bk(t) and

α̃z,PS(t) =
∑q+k

j=1 θ̃jBkj(t) = θ̃
′
Bk(t). The score sn(θ) is given by

sn(θ) =
∂Λ̂z,`(β)
∂θ

=
n∑
i=1

wi(z, h) < Bk, Xi − η̂z > (Yi − µ̂z− < β,Xi − η̂z >)− `Gkθ,

where < Bk, Xi− η̂z > is the vector with generic element < Bkj , Xi− η̂z >,
j = 1, . . . , k + q. The second derivative satisfies

∂2Λ̂z,`(β)
∂θ∂θ′

= − Ĉz,l.

20



Let us write now the solution of (12) as α̂z,PS = θ̂
′
Bk. By definition of

α̂z,PS , sn(θ̂) = 0 and then a Taylor expansion of the score gives us

sn(θ̃) = Ĉz,l

(
θ̂ − θ̃

)
. (34)

Since Ĉz,l is a strictly positive matrix except on an event whose probability
tends to zero with n, one has equivalently

Ĉ−1/2
z,l sn(θ̃) = Ĉ1/2

z,l

(
θ̂ − θ̃

)
. (35)

Using the same arguments as for showing (38) in Cardot and Sarda (2005),
we obtain, except on an event whose probability tends to zero with n∥∥∥Ĉz,l(θ∗)1/2

(
θ̂ − θ̃

)∥∥∥2

≥ C9

(
‖α̃z,PS − α̂z,PS‖2z + `

∥∥∥(α̃z,PS − α̂z,PS)(m)
∥∥∥2
)

+ oP (ι), (36)

where ι = ιn is a sequence of positive reals such that ι/` is bounded. Defining

s(θ) =
∂Λz,`(θ)
∂θ

= IE (〈Bk, X − ηz〉 (Y − µz − 〈β,X − ηz〉) |Z = z) + `Gkθ,

and noticing that s(θ̃) = 0,. we have using the facts that ‖Bk‖2 = 0(1) and
‖α̃z,PS‖2 is bounded by a positive constant

‖sn(θ̃)‖2 = ‖sn(θ̃)− s(θ̃)‖2

=
∥∥∥〈Bk, ∆̂z −∆z〉+ 〈Bk, (Γ̂z − Γ)α̃z,PS〉

∥∥∥2

= OP
(
h2τ1

)
+OP

(
h2τ2

)
+OP

(
h2τx
x

)
+OP

(
h

2τy
y

)
+OP

(
log n

n min(h, hx, hy)

)
.

This gives us with (36) and since ‖Ĉ−1
z,l ‖ = Op(k/`)

‖α̃z,PS − α̂z,PS‖2z = OP

(
k

`

(
h2τ1 + h2τ2 + h2τx

x + h
2τy
y +

log n
nmin(h, hx, hy)

))
.

Finally, we obtain with (33)
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‖αz − α̂z,PS‖2z = O(k−2p) +O(`k2(m−p)) +O(`)

+OP

(
k

`

(
h2τ1 + h2τ2 + h2τx

x + h
2τy
y +

log n
n min(h, hx, hy)

))
= oP (1),

for well chosen values of k and `.
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