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Abstract 

The aim of this paper is to simultaneously estimate n curves corrupted by noise, this means sev- 
eral observations of a random process. The non-parametric estimation of the sampled paths leads to 
a new kind of functional principal components analysis which simultaneously takes into account a 
dimensionality and a smoothness constraint. Furthermore, the use of B-spline approximation to esti- 
mate the curves allows the study of unbalanced longitudinal data. The relationship between the choice 
of the smoothing parameter and that of dimensional&y is discussed. A simulation study shows good 
behaviors of this proposed estimate compared to n independent smoothing splines under generalized 
cross-validation. Finally, the methodology of this paper is illustrated by its application to a real world 
data set. 

Keywords: Non-parametric regression; Functional principal component analysis; Hybrid splines; 
B-splines; Rainfall data 

1. Introduction 

The aim of this paper is the functional estimation of several curves, this means 
simultaneous non-parametric regressions of smooth sampled curves corrupted by 
noise. Furthermore we consider the case of missing or unbalanced data. This means 
that curves are not necessarily observed at the same times. The regressions could 
be achieved by computing n classical non-parametric (kernel or spline) regressions 
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where each smoothing parameter is independently optimized by generalized cross- 
validation (GCV). But this approach does not take into account the fact that the 
data are independent observations of the same process and simulations show that it 
induces a loss of fit. 

This kind of data has been previously studied by Besse and Ramsay (1986) 
Ramsay and Dalzell ( 199 1 ), Besse and Pousse (1992) and Kneip ( 1995) which deal 
with principal components analysis (PCA) of curves. These are closely related to 
other papers which aim at approximating a covariance function by smooth eigen- 
functions (Rice and Silverman, 1991; Jones and Rice, 1992; Pezzuli and Silverman, 
1993). In another context, Boularan et al. (1993) propose a two-step non-parametric 
model well adapted to unbalanced data, for example, growth curves. In that case, 
each curve contributes to the functional estimation of a common effect as well as 
being separately estimated. 

In some other cases, for instance when curves do not roughly share the same 
common shape, it is more interesting to take the covariance function into account. 
This is achieved by both considering dimensional and smoothness constraints in a 
simultaneous non-parametric estimation. This leads to the definition of a new kind of 
functional PCA. The solution is similar to those found in parallel works by Denby 
and Mallows (1993) Besse ( 1994) and Silverman (1995) but takes the unbalanced 
measurement into account. 

The organization of the paper is as follows. In Section 2 we establish notations and 
define the framework of our study. Section 3 is devoted to the estimation problem 
under rank and smoothness constraints. The unbalanced sample paths are, at first, 
estimated by means of B-splines. Afterwards the smooth functional PCA is applied to 
the coordinates of the trajectories in the space spanned by the B-splines. Section 4 
discusses the choice of the smoothing parameter value jointly with the choice of 
dimensionality. In Section 5 we compare estimates of simulated noisy functions 
which are obtained, on the one hand, by spline smoothing of each curve with a 
GCV smoothing parameter and, on the other hand, by this new functional PCA. 
All programs are written in S+ (Becker et al., 1988) and are available on request. 
Finally, the methodology of the paper is illustrated by its application to a set of 
rainfall data. 

2. Functional framework 

Let (0, A) be a measurable space with the probability measure P and z a vector 
random function (r.f.) mapping from (!&A, P) into (H, BH) where H is a sepa- 
rable Hilbert space and BH its Bore1 field. We assume that z is a second-order r.f., 
E((zll~ < 00, where Il.J(H denotes the norm of H, and define y = E(z). 

Now let us assume z is a “smooth” stochastic process whose sample paths belong 
to a q-dimensional subspace H4 of H. This means that the r.f. z can be decomposed 
as a linear combination of q smooth elements of H. One way to control the smooth- 
ness and the regularity of the trajectories of the r.f. z is to let H be a Sobolev 
space IY@‘[O, I], that is to say the collection of functions on [0, l] (without loss of 
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generality) which obey 

{f: f,fL.. , f +‘) absolutely continuous, f @) E &[O, 11). 

The smoothness of a function f in Wm[O, l] can be controlled by the semi-norm 

(1) 

One could generalize to any equivalent semi-norm (see Wahba, 1990) leading to 
Tchebycheffian splines by replacing the differential operator D” in the expression 

Ilf II; = IP”f Iliz 
by some more general differential operators. 

Let us assume, for almost all cc) in a, the function z(a, .) belongs to Hq which is 
a q-dimensional subspace of Wm[O, l] and the r.f. satisfies the smoothness constraint 

!Ellzll; < c, c > 0. 

In practice, each sample path {z(mi, .); i = 1,. . . , n} of the r.f. z is observed at a 
finite number, pi, of points in the interval [0, 11, 0 < til < . . f < tpz 5 1. Usually 
the measuring apparatus introduces measurement errors which can be supposed to 
be independent and identically distributed with finite variance c2. This leads to the 
observation of the random vector’ of [WPJ: 

_Vi = Zi + Ei, 

with the following assumptions and notation for i,j = 1,. . . , n: 

(2) 

[E&i&i = CT219 

Zi = (Z(Wi, til 1, . . .Y z(Wi, (II, 1)‘. 

As a first step, to achieve our functional data analysis, we have to estimate the tra- 
jectories from the noisy and discrete observations. It will be done non-parametrically 
to “let the data a chance to speak”. The use of B-splines (De Boor, 1978) seems to 
be appropriate since we do not need to assume the discretization design is the same 
for all the curves and these functions have good approximation properties. Let us 
denote by 

2Jk,,,= {B,; 1 = l,..., r=k+m+ l} 

a basis of B-splines of degree m defined on [0, l] with k equispaced knots and 
consider Yk,, the space generated by @k,m. It can be noticed that Yk,,, is a subspace 
of Wrn[O, 11. 

’ In the succeeding discussion, we will use bold italic letters to denote vectors or matrices. 
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Let &(t) be the vector of B/(t), 1 = 1, . . . , Y and 

A!fi = + $ Bk(tij)Hk(tij). 

’ J-1 

Then, the least squares estimate ii of zi in Yk,, is 

ii I= c sirB[, 
I=1 

where 

Si = Ai ’ b, 

is the vector of coordinates of the estimated trajectory in the basis of B-splines and 

bi = l/Pi 2 YijBk(tij). 

j=l 

Let us denote by C the scalar product matrix of the B-splines in L2(T) and by 
G the matrix associated to the semi-norm which measures the smoothness of the 
functions of Yk,,m: 

[Cl,, = /B&)B,(t)dt, k, 1 = 1,. . . ,r, 

[ Glkl = /B:““( t )Bjm'( t ) dt, k,l= l,..., r, 

with these notations, 

3. Model and estimation 

In practice we only observe a finite number of independent realizations of the 
smooth stochastic process z. The previous discussion leads us to consider the fol- 
lowing model: 

Yi(tij) = Zi(tij) + Eij, til < ’ < tip,; 

i = l,...,n and j = l,...,pi; 

E(cij) = 0 and lE(cij sijl) = O*Sjj,, 

c unknown (CJ > 0), 

with zi independent of &if, i’ = l,...,lt, 

Zi E Hq a.s., 

lIZill: I C a.s., (3) 
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The data specificity suggests two kinds of constraints in the estimation procedure. 
On the one hand, a dimensionality constraint assumes that curves only span a sub- 
space H4 of WT. On the other hand, each real curve is assumed to be sufficiently 
smooth to satisfy constraint ( 1) with a common constant c. 

A least squares estimation of the sample paths and the subspace leads us to con- 
sider the following optimization problem in which the smoothness constraint is taken 
into account by introducing a Lagrange multiplier p. This is the common smoothing 
parameter for all the curves. 

+ plj2iI[~); .?i E Hi, dim Hi = q , 

where Hi is a q dimensional affine subspace of Yk,,, to be estimated. 
With the above notations, the optimization problem (4) is equivalent to 

where A, is a q-dimensional affine subspace of [w’. 
Let us denote by 5 = ( l/n)Cy=,si the mean coordinates, by xi the vector (s, 

and by r the empirical covariance matrix in the B-splines basis: 

- 

(4) 

(5) 

Finally, let us define HP = (C + pG)-’ which can be interpreted as a smoothing 
matrix. 

Proposition 1. The solution of problem (4) is given by 

h. = H112 p^ H’12Cx. + H 
I P 4P ’ P s, 

C- i = l,...,n. 

The matrix 6 = &Tf is the orthogonal projector on the subspace generated by 
the jirst q eigenvectors of the matrix 

H’12CTCH’12 
P P . 

The proof of Proposition 1 is to be found in the Appendix. 
Afterwards, we can construct the estimated sample paths: 

fi(t) = 2 2(/B/(t), JET, i=l,..., n. (6) 
I=1 

One can notice that the smooth estimated sample paths are obtained by the gen- 
eralized singular value decomposition (SVD) of XCH, with respect to the metrics 
(l/n)Z, and Hi’, X being the matrix whose rows are the xi’s. It can be interpreted as 
a kind of smooth approximation of the Karhunen-Loeve expansion of the observed 
process. Convergence properties are on study. 
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This estimation procedure is very similar to those proposed by Denby and Mallows 
(1993) and Besse (1994). They lead to the spectral analysis of matrices of the form 
/4@)‘%4(;1)“2 where A(L) is a Hat-matrix associated to the smoothing parameter il 
and S is an empirical covariance matrix. The main interest of our estimator is that it 
can be applied to any type of discretization since we work on the coordinates of the 
approximated sample paths. That is not the case for the methods presented before 
because they work directly on the discretized sample paths and therefore have to 
assume the discretization design is the same for each curve. 

Our estimator of the sample paths can be viewed as a B-splines approximation 
of the smoothing splines. They are called hybrid splines by Kelly and Rice (1990) 
and Champely ( 1994) in the context of a non-parametric estimator of a regression 
function. 

They have mainly two advantages compared with the usual smoothing splines and 
the B-splines. On the one hand, if k is sufficiently large, the tradeoff between the 
smoothness and the fidelity to the data can be considered as a function of only one 
parameter, the smoothing parameter p as in the case of smoothing splines. On the 
other hand, they are easily computable like B-splines. Computations only deal with 
spectral analyses or inverses of (r x r) well-conditioned matrices. 

4. Smoothing and dimension choice 

Both hybrid splines and SVD act as smoothing tools. The first is determined by a 
smoothing parameter p whose optimal value depends on data regularity. In contrast, 
SVD of longitudinal data gives approximations of trajectories whose smoothness 
usually depends on the number q of selected components; neglected components are 
often essentially noisy. These parameter values must be jointly optimized in order to 
obtain better fits of the original functions. GCV is commonly used to optimize the 
smoothing parameter of the spline. Unfortunately, its application to the dimension 
choice in PCA (Krzanowski, 1987) is not convincing (Besse and Fe&, 1993) and 
never used in practice. 

Besse and Pousse (1992) suggest another strategy based on a stability criterion: 
PCA results are assumed to be reliable if the estimated subspace g is stable with 
respect to data perturbations. It is then proposed to find a dimension and a smoothing 
parameter which produce stability in this sense. 

We consider the following loss function which measures the subspace estimation 
quality; it is based on the usual norm of matrices when it is applied to measure 
distances between projectors, and thus to measure distances between the associated 
subspaces: 

(7) 

where pq (resp. PQ) is the orthogonal projection onto & (resp. E4). 
In that context, tr @$ is also the sum of the squared canonical correlation coeffi- 

cients between the component sets which respectively span Eq and &. 
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A risk function is then defined by taking the expectation: 

R, = E(c!Yq). (8) 
The criterion R, is symmetrically defined since its value is invariant under any per- 
mutation of the observations yi, resampling methods such as the bootstrap and the 
jackknife are natural candidates to compute estimates for this risk function. Besse and 
Falguerolles (1993) compared these methods which are all computationally expen- 
sive. Furthermore Besse (1992) proposed an approximation of the jackknife which 
does not require much computation. 

If II is large enough, it is quite acceptable to consider that any row elimination 
introduces only a small perturbation in further computations. Perturbation theory 
leads to Taylor’s series expansions of the eigenelements of XCH;” which lead to a 
Taylor’s series expansion of the jackknife estimate and then to an analytic approxi- 
mation: 

RTq = R; + O(K2). 

An analytic approximation of the jackknife estimate is given by 

(9) 

where c;j denotes the general entry of the matrix XCHL” Vq. 
This ses the importance of the gap between successive eigenvalues. The leading 

term in Rpq depends on the difference between the eigenvalues associated with the 
last selected dimension and the first neglected one. This is consistent with intuitive 
considerations: if the difference (1, - &+1 ) is large enough, data perturbations can- 
not lead to the swapping of the associated eigenvectors vq and uq+]. Optimality is 
achieved by minimizing G with respect to both p and q. Simulations show that this 
is not easy, but this heuristic approach leads to fairly workable choices of p and q 
values. An asymptotic study still needs to be developed. 

5. Applications 

5.1. A simulated data example 

Artificial data sets were generated to illustrate the above strategy in the usual 
context of cubic spline smoothing (m = 2). The four data sets of unbalanced observed 
values vi(tij) are obtained by adding to the same “common effects” zi(tii) a simulated 
white noise of controlled standard deviation: 

(i) The true curves have been constructed as follows: 

zi(tij) = J(tij) = aitj + bi COS (27Ctj) + Ci COS (47Vj) for 
{ 

i = 1,...,50, 

j = 0,. . . , pi, 

where ai, bi, ci are pseudo-random numbers uniformly and independently distributed 
in the range [0, l] and ti/ = j/pi. As regards the length of each discretization pi, 
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we draw a uniformly distributed number ui in the range [25,30]; we allocate the 
closest integer of ui to pi. Clearly, the curves are observed at different subdivisions 
of [0, 11. Moreover, H4 is generated by {t, cos (2rct), cos (47~)); the known rank q of 
Hg is equal to 3. 

(ii) The noise was simulated as follows: let N = Cf$ (pi + 1); N observations 
of independently and identically normally distributed pseudo-random variables with 
mean 0 and standard deviation crl = 0.9, 02 = 0.7, 03 = 0.5, rr4 = 0.3 were 
generated. 

However, it is interesting to know the signal-to-noise ratio. To this end, we take 
the same discretization for each curve tij = Zj = j/30, j = 1,. . . ,30. Let Z be 
the (50 x 30) matrix such that [Z], = Zi(Zj) and let D be the (50 x 50) diagonal 
matrix such that [D]ii = pi/N. The positive eigenvalues of the “common effect” 
pseudo-covariance matrix Z’DZ were 

Ii = 1.70, A2 = 1.27, A3 = 0.82 

and the noise variances satisfied 

in order to test different levels of signal-to-noise ratios. 
Since the data were simulated, the true quadratic risk 

could be computed. Initially, &i is the spline regression estimate for smoothing pa- 
rameter value computed by the smooth. spline function of Splus. Each curve was 
separately estimated. In a second step, & is given by (6) for different values of q. 

The plots (Figs. l-3) are computed on the data set with a middle standard devi- 
ation: cr2 = 0.7. Fig. 1 displays Qr(q) for different smoothing parameter values. The 
minimum is reached for q = 3 and p = 2 x 10P5. These plots are to be compared 
with the value of Qr = 3.5 when each curve is separately estimated. Fig. 2, which 
compares a “true” curve with its estimates, shows that GCV oversmooths, but even 
a smaller value of the smoothing parameter does not improve the fit. Only the trun- 
cation of the singular value decomposition, which, in this case, takes the covariance 
structure into account, makes visible the third data component (cos (4nt)) in the 
estimates. 

This estimation does not use the best smoothing parameter value which could 
be found in Fig. 1 by minimizing Ql. It is deduced from Fig. 3 that displays G 
versus log (p). Such a graph is not always easy to interpret because of the highly non- 
linear behavior of eigenelements. Very sharp peaks occur in the case of almost equal 
eigenvalues. As log (p) grows, g3 is successively reliable, then suddenly becomes 
very unstable and, finally, when the third component vanishes by oversmoothing, & 
becomes as stable as &. A competitive p value lies between ee9 and ee7. It is not 
exactly the value which minimizes Q,., but it seems accurate enough to lead to a 
fairly good fit. 
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Fig. 1. The quadratic error Q?(q) versus the smoothing parameter log(p). 
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Fig. 2. A true curve f(tj), compared with its different estimates. 



264 P.C. Besse et al. I Computational Statistics & Data Analysis 24 (1997) 255-270 

c\! 0 

9 0 

-15 -10 
log(rho) 

-5 

Fig. 3. The stability estimate Ryq versus log(p) for different dimensions. 

Table 1 
Q? values of the two kinds of estimates for different noise stan- 
dard deviations; optimal p and q values are deduced from Ryq 
plots 

Std. dev. Spline + GCV Simultaneous regressions 
of the noise 

Qr P 4 Qr 

0.3 0.8 2 x 10-6 3 0.5 
0.5 2.1 6 x lo@ 3 1.2 
0.7 3.5 2x10-5 3 2.1 
0.9 6.2 1 x 1O-4 1 4.8 

Table 1 gives the quadratic errors for each value of the noise standard deviation 
and for each kind of estimate; Qr naturally increases with r~ but the functional PCA 
estimate is always competitive. As the noise variance becomes greater and greater, 
the quality of the estimate is improved by increasing the smoothing parameter (p) 
and also by reducing the dimension (q). 

This study, only based on simulated data, gives an insight into the good behavior 
of these simultaneous non-parametric estimations resulting from that new kind of 
functional PCA. Nevertheless, only an asymptotic study could definitively justify 
such a practice. 
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5.2. Rainfall data 

In this section, the methodology described above is illustrated by an application 
to rainfall data. The data set (ECOSTAT, 1991) consists of monthly observation, 
during 10 years, of rainfalls in 26 French towns. We considered these data as 26x 5 
sampled curves each observed during two years. This cutoff has been chosen to deal 
with more complicated curves. A study of yearly curves led to the same kind of 
results as those displayed below, but fewer components were required. 

Furthermore, unbalanced data were obtained by randomly removing 15% of the 
observed values. Some of these raw curves are displayed in Fig. 4. All the curves are 
strongly unsmoothed and exhibit a very large variability. This is also emphasized by 
considering the first three eigenfunctions (Fig. 5) of a classical PCA computed on the 
balanced raw data. Finally, a classical transformation, the square root, was performed 
to stabilize the variance as it can be done in the case of a Poisson distribution. 

The smoothed functional PCA of these unbalanced data was then computed by 
considering the hybrid spline approximation of each curve under the dimensionality 
constraint. This methodology requires to choose jointly the smoothing parameter 
value and the dimensionality. This was achieved by considering the graphs of the sta- 

bility estimate (Fig. 6). It displays the estimate of the stability score G for different 
dimensions q calculated at a grid (on a logarithm scale) of values of the smoothing 
parameter. For small values of p(log (p) < -5), only the first component, which 
mainly takes a trend into account, is reliable. For larger values of p(log (p) > 6) 
the transformed data are oversmoothed and many components vanish. As suggested 

8- 

8- 

8- 

O- 

5 10 1’5 20 

Fig. 4. Three curves coming from pluviometrical data set. 



266 P. C. Besse et al. i Computational Statistics & Data Analysis 24 (1997) 255-270 

0 
d 

4 
? 

5 10 15 20 

Fig. 5. The first three eigenfunctions computed by the classical PCA on the original data set. 
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Fig. 6. The stability estimate r pq versus log(p) for different dimensions. 
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Fig. 7. The first five eigenfunctions providing Fq. 
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Fig. 8. Comparison between the simultaneous regression estimate (q = 5, p = 1) and the spline 
estimate (gcv). 
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by the drop in RP5, we retained q = 5 and p z 1 corresponding to the minimum 
reached by RP5. 

In Fig. 7 the first five smooth eigenfunctions are given. Finally, in Fig. 8, a 
raw curve, its classical spline estimate and the proposed smoothed functional PCA 
estimate are compared. It clearly appears that the latter only is able to emphasis 
natural quasi-periodic components in spite of both missing data and such a large 
variability of the noise. 

Appendix 

Proof of Proposition 1. The criterion to minimize is decomposed as follows: 

+IIi - 4s + PIMI’C. 
This leads us to estimate ii by smoothing the empirical mean: 

2 = H&S 

and also to solve: 

29 
’ cfi 

t $ (llxi - (4 - i)ll’, + pII4 - ill’,) , 
1=l 1 

(A-1) 

where A, = 5 + Eq such that Eq is a q-dimensional subspace of KY. 
Let us define the transformation 

which can be interpreted as smoothing the centered coordinates. Now, let Qi be the 
following quantity: 

Q; = 1(x, - (U; - ;>I[‘, + pllu; - ill”,. 

Since for all v in R’, v’Cv = tr v’cv = tr vv’C, we have 

11X; - (Uj - 2)ll~=trXjX(C- 2tiXj(Uj - Z)'C 

+tr(ui - Z)(U; - Z)‘C; 

then, we can write 

Q; = trH~‘.?;i~H~‘C-’ - 2tri;(u; - i)‘Hi’ + tr(g - Z)(u; - i)‘Hi’, 
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which can be decomposed as 

Q; = tr_XYiiiHi’ + tr(S - i)(Ui - i)‘HT’ 

-2 trii(Ui - &)‘H,T’ + tr_i?iii(pG+ P~GC-‘G) 

= (/ii - (Ui - ;)I/;;1 + trXifi(pG+ /I~GC-‘G). 

Since only the first term depends on ui, the problem (A. 1) becomes 

(A.2) 

The solution is achieved by the spectral analysis of the matrix 

1 n _ 
c 

’ i=) 
iii: = HpCTCHp 

with respect to the metric Hi’: 

H,CTCp= vi and %‘H;’ F=Z, (A.3) 

where p is the matrix whose columns are the eigenvectors of HpCrC, z is the 
diagonal matrix containing the eigenvalues and Z is the identity matrix in KY. 

Moreover, it is easy to infer from the above eigenequation (8) that 

H;!+rCH;/2H;1,‘2 p = Hill2 FL. 

Thus, setting V = Hill2 v, we have 

H:!‘CTCH:’ V = Vi and V’V = Z, (A.4) 

where V and L are obtained from the eigenanalysis of the real symmetric matrix 

H’f2CrCH’/2 
P P . 

The projector & is then derived from c, 

& = v, CH;‘, 

and applied to HpCXi. ??
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