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9, avenue Alain Savary - B.P. 47 870, 21078 Dijon, France

(2) Centre D’Etudes Spatiales de la Biosphère, UMR CNES-CNRS,
18 Av. Edouard Belin, 31401 Toulouse, France.
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Abstract

Remote sensing is an helpful tool for crop monitoring or vegetation
growth estimation at a country or regional scale. However, satellite
images generally have to cope with a compromise between the time
frequency of observations and their resolution (i.e. pixel size). When
concerned with high temporal resolution, we have to work with in-
formation on the basis of kilometric pixels, named mixed pixels, that
represent aggregated responses of multiple land cover. Disaggreggation
or unmixing is then necessary to downscale from the square kilometer
to the local dynamic of each theme (crop, wood, meadows,...).

Assuming the land use is known, that is to say the proportion
of each theme within each mixed pixel, we propose to address the
downscaling issue through the generalization of varying-time regres-
sion models for longitudinal data and/or functional data by introduc-
ing random individual effects. The estimators are built by expanding
the mixed pixels trajectories with B-splines functions and maximizing
the log-likelihood with a Backfitting-ECME algorithm. A BLUP for-
mula allows then to get the ”best possible” estimations of the local
temporal responses of each crop when observing mixed pixels trajec-
tories. We show that this model has many potential applications in
remote sensing and an interesting one consists in coupling high and
low spatial resolution images in order to perform temporal interpola-
tion of high spatial resolution images (20m), increasing the knowledge
on particular crops in very precise locations.

The unmixing and temporal high resolution interpolation approaches
are illustrated on remote sensing data obtained on the South-Western
of France during the year 2002.
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1 Introduction

Satellites are increasingly used in many domains of the earth sciences such as
oceanography, meteorology or continental surfaces studies (see for example
Richards & Jia, 2005 or the web sites http://www.noaa.gov/eos.html and
http://www.eumetsat.int/). For continental surfaces, vegetation and more
specifically crops can be observed and studied with optical remote sens-
ing. These observations consist in reflectances, which are ratios between
reflected and incoming energy, principally at two wavelengths (Red: 0.6µm
and Near InfraRed: 0.9 µm) according to the spectral signature of green
leaves (Richardson & Wiegang 1977, Knipling 1970). Thanks to these prop-
erties, reflectances and their combinations are able to reveal the impact of
pedoclimatic conditions or agriculture practices on the vegetation and crops
dynamic.

At the scale of crop fields, reflectances provided by satellite optical sen-
sors permit to estimate models parameters and dynamic variables (Moulin
et al. 1995, Moulin et al. 1998, Ridao et al. 1998, Kastens et al. 2005). The
interest of such data of course lies in the time and geographic dimension
that are the specific advantages of satellite imagery.

However, the earth observation from space has to cope with a dilemma
between repetitiveness and pixels resolution. Nowadays, quasi daily global
coverage are available for free at kilometric (NOAA/AVHRR missions) and
sub-kilometric resolution (250m) with for example the MODIS or MERIS
missions. On the other hand, the observation at 20 meters (or less) that
would be necessary for crop applications can hardly be delivered more of-
ten than once per month for small regional scales and at expensive prices.
The time frequency of low resolution data would be satisfying in case the
pixel heterogeneity can be overcame. Disaggregation or unmixing (Faivre &
Fischer, 1997, Lobell et al. 2004) is then necessary to downscale from the
square kilometer to the local dynamic of each vegetation type (crop, wood,
meadows,...).

In this context, our study is devoted to the presentation and evaluation
of an original statistical methodology for the unmixing issue which takes
advantage of the high time frequency of low resolution data in order to
increase the repetitiveness of high resolution time series.

The spatial aggregation problem is described in Figure (1) which presents
the same area observed both with sensors at high and low spatial resolutions.
For example, in the visible and the near infra-red wavelengths, onboard the
two last spot satellites SPOT 4 and SPOT 5, a daily global coverage of
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continental surfaces is made possible at kilometric resolution thanks to the
VEGETATION sensor (Maisongrande et al. 2004). On the same platform,
the HRVIR (High Resolution) sensor provides users with regional scenes
(60km×60km) at 20m resolution but its repetitiveness of observation on a
specific region reaches hardly one available image per month (Coret et al.
2005). This means that frequent images are only made available on the
basis of kilometric pixels that represent aggregated responses of multiple
land cover inside each low resolution pixel. Figure (1) shows that aggrega-
tion induces a non negligible amount of loss of spatial information and, as a
consequence, a loss of precision on the crop development in each plot. The
unmixing problem consists in recovering the local trajectories knowing the
noisy aggregated response and the proportions of land surface of the different
themes within a mixed pixel. We may expect to get accurate enough estima-
tions of these local behavior by taking into account the temporal evolution
of the aggregated trajectories.

We address this downscaling issue on the basis of a natural statistical
model relying on mixed effects for longitudinal data (Laird & Ware, 1982).
This model is a direct extension to longitudinal (Diggle et al. 1994) and
functional data (Rice 2004, Ramsay & Silverman, 2005) of a previous work
by Faivre & Fischer (1997) who considered the downscaling problem for
only one image, that is to say at one date, and thus without taking into
account the temporal structure of the correlation. Our approach allows
to take implicitly into account the spatial and temporal variations of the
different responses without having to assume explicitly any kind of spatial
correlation that would lead to nearly intractable estimation procedures.

Although parametric growth models exist for some specific crops, they
are not available for most of the themes under studies. Furthermore, these
parametric models are nonlinear and the existing estimation procedures for
nonlinear mixed effects models are nowadays still not efficient enough to cope
with such large data sets (see e.g Déjean et al. 2002). Let us also remark
that interesting hierarchical bayesian approaches (Wikle et al. 2001) have
also been proposed in such spatiotemporal contexts. They lead to rather
heavy estimating procedures and rely on reasonable a priori for the temporal
covariance structure. There are no natural parametric candidate for the a
priori in our context.

Our approach is different and we propose a statistical nonparametric
model which appears to be rather simple and well adapted to deal with
very large data sets. We propose to expand the temporal trajectories with
B-splines functions which are known to provide both accurate approxima-
tions to smooth functions (Dierckx, 1993), which is a natural assumption
for phenological curves, and a parsimonious nonparametric model. It is a
direct extension of the model studied by Hoover et al. (1998) who did not
introduce random effects in their varying-time regression model. Once the
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Figure 1: With satellite images, technical constraints oblige to choose be-
tween repetitiveness and pixels resolution. We present, along time, a same
scene observed at two different resolution and repetitiveness. On top, the
temporal evolution observed by the Low Resolution Sensor SPOT4/VGT
at many frequent dates (potentially 1 image per day). The bottom
part shows sparse time series of three high resolution images acquired by
SPOT4/HRVIR (hardly available once per month). The blue bold line rep-
resents the time profile for a heterogeneous low resolution pixel while the 2
thin red curves stand for the 2 inner elementary land cover types and their
respective time trajectory (that can only be measured at too sparse time
frequency by high resolution sensors). Length of the time axis is about one
year. 4



parameters, mean curves and covariance functions of the different themes,
are estimated, unmixing is performed using a BLUP formula to get the best
approximation of the individual responses. The BLUP formula also allows
us to perform temporal interpolation of high resolution remote sensing data
when observing both low resolution with a high time frequency and high
resolution images at a few different dates (between 3 and 10). Our estima-
tion procedure relies on maximizing the log-likelihood function according to
the coordinates in the B-splines basis by combining a weighted backfitting
procedure (Hastie & Tibshirani, 1990) for the fixed effects and an ECME
step (Mac Lachlan & Krishnan, 1997) for the variance components. Our
model can also be interpreted as a generalization of the functional PCA for
mixtures of curves when the mixture coefficients, i.e. the proportions of land
use of each theme within mixed pixels, are known. The proposed algorithm
is rather effective and it takes only a few minutes to converge with images
representing area of about 4500 km2 with 35 dates of observation and a land
use classification composed of 7 different themes. Let us note that a similar
varying time regression model with random effects has been proposed by Wu
& Liang (2004). Nevertheless, their estimator, which is based on local poly-
nomials, does not seem to be suitable for such large remote sensing datasets
since it only considers the univariate case and extending their approach to
multivariate covariates is not immediate at all.

In section 2, we present the aggregation model and give an empirical
justification for such a mixed effects approach based on functional principal
components analysis (Ramsay & Silverman, 2005) of some high resolution
trajectories. Section 3 describes the estimation procedure. In section 4
a brief simulation study confirms the good properties of the B-splines ap-
proximation and the optimization algorithm. Section 5 presents a real life
application in the South-Western France, a region for which we have, dur-
ing year 2002, a sequence of 36 medium resolution VEGETATION images
as well as 10 SPOT4/HRVIR high resolution images inside an area of about
4500 km2. Finally, section 6 proposes a general discussion, some extensions
of this approach and what could be next investigations.

2 The aggregation model of phenological curves

Before going on, let us fix some notations. We suppose we have p low
spatial resolution images observed at p different instants during the season,
t1 < t2 < · · · < tp, which are not necessarily equi-spaced. Each image is
composed of n coarse resolution pixels i, i = 1, . . . , n and for each pixel i
we get a discretized trajectory Xi = (Xi(t1), . . . , Xi(tp))′ ∈ Rp where Xi

is either the observed reflectance curve for a certain channel (BLUE, RED,
GREEN or NIR) or for a Vegetation Index which is a linear combination of
the reflectance for different channels. We also suppose that the land use is
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known, that is to say we have the proportion πij of surface of each theme j,
j = 1, . . . , J within each pixel i. They satisfy πij ≥ 0 and

∑J
j=1 πij = 1.

In the visible and the near infra-red wavelengths, a natural aggregation
model (Foody & Cox, 1994) of the responses of the different themes is the
following one:

Xi(t) =
J∑
j=1

πij ρij(t) + εi,t, t ∈ {t1, t2, · · · , tp}, (1)

where ρij(t) is the reflectance curve, or “phenological curve” for theme j (e.g.
crop type), within pixel i and the noises εi,t are supposed to be independent
and drawn from a Gaussian distribution with mean zero and variance σ2.
Let us notice that model (1) can not infer generally directly at the par-
cel scale since there can be many different parcels of a same crop within a
coarse resolution pixel. Our model only describes the ”mean” response ρij(t)
of plots of crop j within pixel i, that is to say the mean responses of the
different parcels of a same crop. Nevertheless, it is generally well adapted
for modeling local responses of crops since the intra-pixel (or within pixel)
variabilities are relatively small compared to the inter or between (mixed)
pixel variabilities. This hypothesis is realistic for remote sensing when deal-
ing with pixels whose size is about 1km2. Indeed, within such a surface, the
assumption of ”homogeneity” in the responses of different plots of a same
crop is often satisfied.

Unfortunately the parameters of interest ρij(t) of model (1) can not be
identified when observing the aggregated responses Xi(t). To cope with this
problem, Cardot et al. (2003) made following simplification

ρij(t) = ρj(t), t ∈ [0, T ], (2)

assuming that, for relatively small areas (around 40 km × 40km), the re-
sponse of a culture does not vary with the location i of the pixel. One major
drawback of this approach is that it does not take into account the local
variations of the phenological curves assuming the growth of a culture as
being nearly identical in all the considered area. Unfortunately this might
not be the case (see next section), even for regions with moderate size, since
factors such as soil composition or climate may also vary spatially, influenc-
ing locally the crop development and its temporal evolution. Thus, one has
to find an intermediate model between the overparametrized model (1) and
the too simple model (2).

2.1 Towards a mixed effects approach

Thanks to a regional scientific project involving the high resolution moni-
toring of a specific region near Toulouse (”Sud-Ouest” project, see section
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5 for more details), we also have a time series of 10 dates of high resolution
images (SPOT4/HRVIR) during year 2002. This dataset allows the diag-
nostic of variations of the responses of each vegetation type around its mean
phenological curve.

For instance, let us have a closer look at temporal responses according
to the PVI index (Tucker, 1979) of pixels composed only of ”wheat crops”
(see Figure 2). The PVI index, a linear combination of the responses in the
RED and NIR channels defined by PVI=a NIR- b RED with a = 0.62 and
b = 0.78 in this region, shows that assumption (2) is really too strong. One
cannot assume that variations of the ”wheat” pixel trajectories around its
mean phenological curve are only due to independent noises as supposed
in (2). Indeed a functional PCA (Ramsay & Silverman, 2005), which can
also be interpreted as a mixed effects model (Rice & Wu 2001), exhibits a
high temporal correlation structure, meaning that the variations around the
mean function ρj(t) have a strong temporal structure and projecting the
data onto a 2-dimensional space of functions allows to explain more than 70
% of the whole variability.

Looking now at the two last displays in Figure (2), in which we have
drawn the densities of the principal components, one clearly sees that even if
the principal components are not exactly Gaussian they are clearly unimodal
and can be approximated, at first sight, without much error, by Gaussian
random variables. Having in mind these consideration Cardot et al. (2004)
proposed a Gaussian mixed effects model in order to describe the temporal
behavior of mixed pixels.

Assuming the response of the different themes are independent and that
the temporal correlation of the themes does not depend on the location, we
propose the following model Xi(t) =

J∑
j=1

πij ρij(t) + εi,t, t ∈ {t1, . . . , tp},

ρij ∼ N
(
ρj ,Γj

)
, j = 1, . . . , J,

(3)

where ρj(t) is the expectation of the random function ρij(t), ρj = (ρj(t1), . . . , ρj(tp))′,
ρij = (ρij(t1), . . . , ρij(tp))′ and Γj = IE

(
ρij − ρj

) (
ρij − ρj

)′ is the covari-
ance matrix with elements

[Γj ]`,`′ = Cov(ρij(t`), ρij(t`′)) = γj(t`, t`′), `, `′ = 1, . . . p.

The noise components εi,t are supposed to be independent and Gaussian
with mean zero and variance σ2. Model (3) is a random effects varying-time
regression model.

2.2 Interpolation and prediction with the BLUP formula

Unmixing and temporal interpolation can be handled naturally with the
BLUP formula (Robinson, 1991) which is recalled now. If (U,V) is a Gaus-
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Figure 2: Functional Principal Components Analysis of the response of the
PVI of high resolution pixels observed at 10 different instants during year
2002 and containing 100 % of the theme ”Wheat”. The graphs represent a/
a sample of one hundred wheat pixels trajectories, b/ the explained variance
by the ten principal components, c/ and d/ the variation around the mean
trajectories induced by respectively the first and second eigenfunctions, e/
and f/ the density of the first and second principal components.

8



sian multivariate random variable

(U,V) ∼ N
((

µu
µv

)
,

(
Γu Γu,v
Γv,u Γv

))
the best linear unbiased prediction of the component U having observed
V = v, is given by the well known BLUP formula

IE (U|V = v) = µu + Γu,vΓ−1
v (v − µv) . (4)

Going back to our study and assuming that Xi, πij ,ρj , Γj and σ2 are
known, we can give an answer to the first question, that is to say determine
the best estimation of the response of a crop within a mixed pixel. Taking
U = ρij(t) and V = Xi = (Xi(t1), . . . , Xi(tp))

′ we get

IE (ρij(t) | Xi) = ρj(t) + Cov(ρij(t),Xi) [Var(Xi)]
−1

Xi −
J∑
j=1

πijρj

(5)

where
Cov(ρij(t),Xi) = πij (γj(t, t1), . . . , γj(t, tp))

and

[Var(Xi)]`,`′ = σ2I{`=`′} +
J∑
j=1

π2
ijγj(t`, t`′) .

Suppose we now observe a plot with a higher resolution sensor at a few
instants τ1, . . . , τκ with κ << p. We assume each pixel of this sensor is pure,
that is to say its underlying surface is only occupied by one crop, and as
before we suppose the variability of the response of each crop is very small
for crops located in the same mixed pixel. If these assumtions are satisfied,
which is the case in practice (see discussion in the concluding remarks) then
temporal trajectory of the high resolution pixel can be estimated (using the
best linear predictor) at any other instant τ. Assuming that we also observe
during the same period of time (but not necessarily the same instants) the
trajectory of the underlying mixed pixel Xi = (Xi(t1), . . . , Xi(tp)) , temporal
interpolation is performed by applying the BLUP formula (4) with U =
ρij(τ) and V = Vi = (ρij(τ1), . . . , ρij(τκ), Xi(t1), . . . , Xi(tp))

′ ∈ Rκ+p. Then

IEρij(τ) = ρj(τ) + Cov(ρij(τ),Vi) [Var(Vi)]
−1 (Vi − IEVi)

with IEVi =
(
ρj(τ1), . . . , ρj(τκ),

∑J
j=1 πijρj(t1), . . . ,

∑J
j=1 πijρj(tp)

)′
.

Note that we can also get the conditional variance both for the interpo-
lation and disaggregation approaches.
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3 Maximum likelihood estimators

We first propose to expand the observed aggregated trajectories with B-
splines basis. Then we can get an approximation to the likelihood function
and look for its maximum with an algorithm that combines Backfitting for
the fixed effects and ECME for the random components.

3.1 B-Splines approximation of the phenological curves and
their conditional variances

Trajectories are expanded in B-splines basis (Dierckx, 1993) in order to
have a finite and relatively small number of parameters to estimate. These
functions are known to provide parsimonious and good approximations to
”smooth functions” such as the true phenological curves. Thanks to their
local support, they also have good numerical properties, which is not the
case for polynomial approximation. To gain in flexibility, we consider two
different basis for the mean phenological curves and for the individual varia-
tions. We take a B-splines basis, B1(t), . . . , BK1(t), (resp. B1(t), . . . ,BK2(t))
of order q1 (resp. q2) with k1 (resp. k2) equi-spaced interior knots in the
period of interest for the expansion of the mean phenological curves (resp.
the individual variations) where K1 = k1 + q1 (resp. K2 = k2 + q2) is the
dimension of the functional space spanned by the B-splines.

Approximation to the individual responses can be written as follows

ρij(t) ≈
K1∑
k=1

θk,jBk(t) +
K2∑
s=1

δis,jBs(t), (6)

separating the fixed effects, θk,j , from the random effects δis,j which are
supposed to be centered. Going back to the mixed pixels trajectories, we
get the formulation for the aggregated data

Xi(tν) ≈
J∑
j=1

πij

K1∑
k=1

θk,jBk(tν) +
J∑
j=1

πij

K2∑
s=1

δis,jBs(tν) + εi,tν , (7)

for ν = 1, . . . , p and i = 1, . . . , n. Denoting by γs,`j = Cov(δis,j , δ
i
`,j), this can

also be written in a matrix way as follows

IE (Xi) = Bθπi (8)

Var (Xi) = σ2Ip +
J∑
j=1

π2
ij

K2∑
s,`=1

γs,`j BsB′` (9)

where Xi = (Xi(t1), . . . , Xi(tp)), θ is the matrix K1× J whose elements are
[θ]k,j = θk,j , B is the matrix p × K1 whose elements are [B]ν,k = Bk(tν),
Bk = (Bk(t1), . . . , Bk(tp))′ and Bs = (Bs(t1), . . . ,Bs(tp))′.
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Remark 1 Note that (9) does not assume that δis,j and δis′,j are indepen-
dent for s 6= s′ but we assume that there is no correlation between different
themes. As a matter of fact, it is easily seen that one can get estimations
of the cross covariance function since this assumption is not required in the
estimation procedure (see below), at the expense however of a much larger
number of parameters to be estimated. We focus here on crop trajectories
and not on the relation between crops and this is the main reason why this
assumption was made since .

Remark 2 Such a B-splines decomposition is still valid even if the pixels
are not exactly observed at the same instants which is the case for instance
when we have S10 synthesis (see e.g. Duchemin & Maisongrande 2002,
Maisongrande et al. 2004). With S10 synthesis, the image is composed of
pixels whose value is the best response in term of measurement quality (no
clouds, no aerosol, ...) among ten consecutive days. To remain valid, we
only have to assume that there is at least one time measurement between
two adjacent interior knots which is generally true if the number of knots is
not too high. Then, one can consider vectors Bk,i and Bs,i that depend on i
without modifying the estimation procedure described below.

3.2 The likelihood function

At this stage, let us introduce the following notation. Denote by Vi the
p× p variance matrix of the digitized trajectory Xi, defined in (9),

Vi = σ2Ip +
J∑
j=1

π2
ijBΓ̃jB′ (10)

where B is the p ×K2 matrix with generic element [B]ν,k = Bk(tν) and Γ̃j
is a matrix K2 ×K2 whose elements are [Γ̃j ]s,l = γs,lj .

The log-likelihood, equals, up to a constant,

L = − 1
2

(
n∑
i=1

log |Vi|+
n∑
i=1

(Xi −Bθπi)
′V−1

i (Xi −Bθπi)

)
(11)

and the parameters to be estimated are σ2, the K1 × J matrix θ and the J
covariance matrices Γ̃j whose sizes are K2 ×K2.

3.3 The optimization algorithm

The estimation procedure proposed here is based on combination of the
backfitting algorithm and a kind of EM algorithm (Laird & Ware, 1982),
called ECME which is known to converge faster than the classical EM algo-
rithm (McLachlan & Krishnan, 1997). Let us note that one major advantage
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of this approach compared to direct optimization procedures is that the es-
timated covariance matrices are automatically non negative.

One reasonable approach to maximize (11) is to consider an alternating
procedure for linear mixed models and conditional variance estimation. The
steps of the algorithm are the following ones

1. Initialization: get θ̂
0

by classical least squares (see Cardot et. al.,
2003).

2. Determine an estimator of the variance components Γ̃j and σ2 with
the ECME step (see below).

3. Maximize the likelihood according to θ, ̂̃Γj and σ̂2 being obtained
at previous step. This step is equivalent to a weighted least squares
minimization.

4. Iterate steps 2 and 3 until convergence. The algorithm is stopped when
the variations of σ̂2 are less than 0.001.

Once the algorithm has converged, we can deduce estimation of the phe-
nological curves for each instant t,

ρ̂j(t) =
K1∑
k=1

θ̂k,jBk(t) (12)

as well as the covariance functions

γ̂j(s, t) = B′(s)̂̃ΓjB(t) (13)

where B(t) = (B1(t), . . . ,BK2(t))′.
These steps are described in details in the following sections.

3.3.1 Estimating the variance components with ECME

Let us denote by δij = (δi1,j , . . . , δ
i
K2,j

)′ the vector individual components.
Assuming that we have estimators (obtained during previous iteration of

the algorithm) for the individual covariance matrices, V̂i, we can deduce the
conditional expectations for the individual components δ̂

i

j = IE
(
δij | Xi

)
as

well as ε̂i = IE (εi | Xi) using the BLUP formula,

δ̂
i

j = πijΓ̃jB′V̂−1
i

Xi −
J∑
j=1

πijBθ̂j

 , (14)

ε̂i = Yi −
J∑
j=1

πij

(
Bθ̂j + Bδ̂

i

j

)
. (15)
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With these expressions we can get estimates of the variance components

n
̂̃Γj = IE

(
n∑
i=1

δ̂
i

j(δ̂
i

j)
′ | Xi

)

=
n∑
i=1

{
δ̂
i

j(δ̂
i

j)
′ + Var

(
δij | Xi

)}
. (16)

The variance σ2 of the noise is estimated by

np σ̂2 = IE

(
n∑
i=1

ε′iεi | Xi,
̂̃Γ1, . . . ,

̂̃Γp)

=
n∑
i=1

{
ε̂′iε̂i + tr Var (εi | Xi)

}
. (17)

Formulas for the expected conditional variances are given in McLachlan &
Krishnan (1997).

3.3.2 A backfitting algorithm for weighted least squares itera-
tions

Let us notice that the least squares criterion corresponding to step 0 and
step 3 in the previous algorithm can also be expressed in a matrix way as
follows :

min
θ

ϕ(θ) =
n∑
i=1

∥∥∥∥∥∥Xi −
J∑
j=1

πijBθ̂j

∥∥∥∥∥∥
2

V−1
i

, (18)

where ‖X‖2
V−1
i

= X′V−1
i X. Then, finding the roots of the set of score equa-

tions
∂ϕ(θ)
∂θj

∣∣∣∣
θ=bθ = 0, j = 1, . . . , J, (19)

is equivalent to solve the problem according to θ1, . . . ,θJ

J∑
j′=1

(
n∑
i=1

πijπij′B′V−1
i B

)
θj′ =

n∑
i=1

πijB′V−1
i Xi, j = 1, . . . , J. (20)

Solving this system of equations can be done rather rapidly by blocks with
the backfitting algorithm (Hastie & Tibshirani, 1990).

4 A simulation study

Before applying our method to real datasets we perform a brief simulation
study in order to evaluate the effectiveness of the estimation procedure.
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We have simulated n = 1000 aggregated trajectories

Xi(t) =
J∑
j=1

πij ρij(t) + εi,t

with

• i = 1, . . . , n = 1000 pixels

• p = 40 instants sorted in ascending order, t1 ≤ . . . ≤ tp, and drawn
from a Uniform distribution in [0, 1].

• Var(εi,t) = σ2 = 0.05

• Land use : j = 1, . . . , J = 3 classes and the πij are drawn from an
uniform law in [0, 1] and then normalized as follows πi1 +πi2 +πi3 = 1

• The high resolution trajectories are gaussian processes with mean and
covariance functions evaluated for t and s belonging to {t1, . . . , tp} :
ρ1(t) = 5 exp(−(t− 0.5)2/0.1), γ1(s, t) = exp(−|s− t|),
ρ2(t) = 6 exp(−(t− 0.4)2/0.02), γ2(s, t) = (1 + 4(t− s)2)−2

ρ3(t) = 6 exp(−(t− 0.7)2/0.05), γ3(s, t) = (1 + 4(t− s)2)−4

The mean response curves ρ1, ρ2 and ρ3 can be understood as classical phe-
nological curves (not scaled in this simulation study) with a growing period
and then a decreasing one. They differ each other from the growing rates
and the instants they reach their maximum.

In the estimation procedure, we have chosen k1 = k2 = 5 interior knots
and order q1 = q2 = 3 so that K1 = K2 = 8 for the B-splines functions,
allowing for a certain flexibility without needing to estimate too many pa-
rameters. We also consider other basis, allowing the number of interior knots
to vary: it appeared, provided this number is not too low (not less than 4
to avoid larger bias) and not too high (not more than 10 to avoid increasing
variance), the results are quite the same. The algorithm, coded in R, is fast
and takes less than one minute to converge with 1+3×8+3×8×9/2 = 133
estimated parameters.

Unmixing aggregated trajectories

We have drawn in Figure 3 a realization of X and the estimated mean
response curves defined in (12). We clearly see that the B-splines expansion
give very accurate estimations to the mean behavior of the different themes.
If we study the variance components, the conclusion are quite the same.
The estimator σ̂2 = 0.048 whereas the true value is 0.05. Considering now
the loss criterion ∑p

`,`′ (γ̂j(t`, t`′)− γj(t`, t`′))
2∑p

`,`′ γj(t`, t`′)
2
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Figure 3: An example of simulated mixed pixel trajectory (plain line) and
its noisy discretized observation (circles). True (plain line) and estimated
(dotted line) mean response curves of the three different classes.
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to evaluate the skill of the covariance term estimation, we get an error of
about 0.06 for γ̂1, 0.04 for γ̂2, and 0.08 for γ̂3, which means that we have
obtained rather good approximations to the true covariance functions.

Let us look now, in Figure 4, at the estimation of the local responses, ρ̂ij
obtained thanks to the BLUP formula. We first notice that if the proportion
of the theme (theme 3 here with πi3 = 0.49) is sufficiently high, then there is
an important gain in considering a mixed effects model and our estimators
are able to capture rather well the variations from the mean response curve.
On the other hand, if the proportion of the theme is not high enough (theme
1, with πi3 = 0.23), that is to say its contribution to the aggregated curve
Xi is too low, then the individual curves is very similar to the mean response
of the theme and there is no real gain in considering a mixed effects model
for estimating individual trajectories.

Temporal interpolation of high resolution trajectories

To study the sensitivity of the quality of interpolation to the number ` of
high resolution points, we consider a number ` of observed high resolution
images varying from ` = 3 to ` = 9, the ` instants being equispaced in [0, 1].

We compare 4 interpolation approaches, ordered according to an increas-
ing level of information, and thus with increasing theoretical performances

• performing a linear interpolation of the high resolution trajectories
(”lin” interpolation method).

• taking into account the estimated mean response curve and performing
a linear interpolation of the local variation (the residuals) around this
mean trajectory. This corresponds to a BLUP interpolation with a
predefined covariance function (”res” interpolation method).

• applying the BLUP formula (4) which takes into account both the
mean phenological curve and the covariance function. It gives the
linear optimal interpolation of a stochastic process with known mean
and covariance function. Theses functions are estimated in practice
with our algorithm. (”blup1” interpolation method).

• taking into account both the high resolution and the low resolution
trajectories in the BLUP formula (”blup2” interpolation method).

The difference between ”blup1” and ”blup2” is that the latter also take
into account the trajectory of the low resolution underlying pixel to get the
conditional expectation, thanks to the BLUP formula, of the high resolution
response.

The error is evaluated with the mean square error of approximation at
the predicted points. Table 1 gives these errors when interpolating trajecto-
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Figure 4: An example of simulated mixed pixel trajectory (bold line) and its
noisy discretized observation (circles). The second display presents the true
trajectory (bold line) as well as the contribution of the three different themes
(dotted lines). The third and fourth displays present the contribution of the
first and third theme (line), whose corresponding proportions are πi1 = 0.23
and πi3 = 0.49, the estimated weighted mean response of the theme (dotted
line) and the estimated individual component (bold dotted line).
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MSE 3 pts 5 pts 7 pts 9 pts
lin 2.65 0.57 0.26 0.038
res 0.24 0.081 0.051 0.011
blup1 0.23 0.052 0.022 0.004
blup2 0.12 0.037 0.018 0.004

Table 1: Mean Square Error (MSE) of interpolation according to the number
of observed high resolution data for the four different approaches.

MSE 3 pts 5 pts 7 pts 9 pts
lin 2.65 0.56 0.26 0.038
res 0.25 0.082 0.052 0.011
blup1 0.24 0.052 0.021 0.004
blup2 0.051 0.024 0.014 0.004

Table 2: Mean Square Error (MSE) of interpolation according to the num-
ber of observed high resolution data for the four different approaches when
considering mixed pixels containing more than 40 % of theme 3.

ries of crops belonging to theme 3. We first remark that the linear interpo-
lation is not effective at all when the number ` of measurements is too low.
The ”res” method does not perform too badly, the information brought by
the mean phenological curve telling what are the most important variations
of the crop. Nevertheless, as the temporal information increases, the two
blup approaches get better and better, allowing to take into account smaller
variations. The blup2 approach is always better and provides good inter-
polations even for a small number of high spatial resolution data. Finally,
when ` = 9, the two blup approaches give similar errors, meaning that coarse
resolution data do not bring additional information anymore.

If we restrict now the computation of the loss criterion to the pixels
containing more than 40 % of theme 3, we can see in Table (2) that the
information brought by the aggregated trajectories still improve significantly
the prediction error made by the blup2 method, even for a small number `
of high resolution data.

5 Application: the ”Sud-Ouest” project

In this section, the synthetic exercise previously described is now applied
to an actual remote sensing dataset. Thanks to the ”Sud-Ouest” Project
(http://www.cesbio.ups-tlse.fr/us/sud ouest.html) carried on at CESBIO,
we took advantage of the simultaneous availability of high and low resolution
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Forest Wheat Maize Pastures
1st axis 42 % 67 % 49 % 63 %
2nd axis 23 % 22 % 24 % 21 %
3rd axis 15 % 6 % 12 % 11 %

Table 3: Explained variance by the first three eigenfunctions of the estimated
covariance operators of four important ”crops” in the South-Western project.

time series during year 2002. Indeed, we have at our disposal 36 VEGETA-
TION images, i.e. one image every 10 days (S10 synthesis see Maisongrande
et al. 2004) as well as 10 high resolution images SPOT4/HRV (Coret et al.
2005). Within this pilot site, we have selected an area with a surface of
about n =4500 km2 in the South-Western of France. We consider the J = 7
most important themes in this region, which are Forest 9%, Wheat 22%,
Maize 8%, Sunflower 12%, Pastures 26%, Urban 12% and ”Remaining” rep-
resenting 11 % of the total surface. The land use classification was made
at CESBIO (Ducrot et al. 2004) using a classification algorithm based on
multi-spectral and multi-temporal high resolution data.

5.1 Unmixing VEGETATION data

We first calibrate, with the land use and the VEGETATION data, the ran-
dom effects model to get estimates of the mean temporal profiles of the
different themes (equation 12) as well as their covariance functions (equa-
tion 13) using the algorithm described previously. The estimated mean
phenological curves of the themes ”Forest”, ”Wheat”, ”Maize” and ”Pas-
tures” are drawn in Figure (5) where we can clearly see that the responses
along time of the different types of vegetation vary in their intensities but
also in their variabilities. For instance, the theme ”Pastures” seems to have
larger variations, from one location to another, than other crops. To study
in details the largest mode of variations of these classes, we have derived the
eigenelements of the estimated covariance functions. The variance explained
by the first three principal components are given in Table 3. We can notice
that mainly all the variability of these crops, that is to say more than 80 %
of the total variations, is captured by approximating the individual trajec-
tories in a two dimensional space for ”Wheat” and ”Pastures” and a three
dimensional space for the themes ”Forest” and ”Maize”.

We have also drawn in Figure (6) the first two eigenfunctions for these
crops. This also clearly points out that the principal modes of variability
can be very different from one crop to another. This also tends to improve
the ability of the BLUP formula to discriminate between the contributions
of the different crops inside a mixed pixel.
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Figure 5: Estimated mean phenological curves (circles) with the PVI during
year 2002 with VEGETATION data for the themes ”Forest”, ”Wheat”,
”Maize” and ”Pastures”. We have added ± two times the instantaneous
standard deviations in order to characterize the main instants in time of
variability (plain lines).
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MSE All pixels Surf ≥40%
lin 6.64 4.68
res 4.68 2.85
blup1 4.78 2.08
blup2 4.09 2.05

Table 4: Interpolation errors of the PVI index for the SPOT4 high resolution
pixels containing ”Wheat” crops as well as those for which the ”Wheat” plots
represent more than 40 % of the total surface.

Note that phenologies presented in Figure (5) are in very good agree-
ment with expected time behaviours for ”Forest”, ”Wheat”, ”Maize” and
”Pastures” classes that have already been investigated by Coret et al. (2005)
on the basis high resolution time series. The mean phenology for forest is
quite realistic, its maximum occurs in May (i.e. slightly later than winter
crops and grass), and, similarly to ”Wheat” and ”Pasture”, it decreases from
late spring to September because of the water stress occurring in the Midi
Pyrénées Region. Automnal re-growth due to new rain fall can be seen as
well on every class but ”Maize”.

”Wheat” and ”Pastures” show quasi-equivalent time phasing in winter
and early spring. Their time pattern get slightly different at ”Wheat” senes-
cence prior to the harvest, when pasture also get dry but often keep a higher
greenness. The phenology of ”Maize” that we estimate is perfectly realis-
tic as well. Its fast increase of leaves from May to August is due to the
irrigation, prior to the senescence phase.

It is also realistic to observe lower intraclass time variability for ”Forest”
and ”Maize” than for ”Wheat and ”Pastures”. Due to its roots depth, Forest
presents a lower sensitivity to the summer water depletion in the upper soil
than wheat and pasture do. The explanation for the low dispersion for Maize
is the regional homogeneity of cultural practices in term of sowing calendar
and irrigation practices.

5.2 Temporal interpolation of SPOT4/HRVIR data

In the same area, high resolution images were available at a few number of
time instants, τ1 < . . . < τ10. In order to evaluate the ability of the mixed
effects approach to get approximations to high resolution trajectories, we
have supposed that we have observed only 4 High Resolution images (at the
dates τ1, τ3, τ5, τ8) and we want to estimate the evolution for the 6 other
dates. The mean square errors of prediction, with the PVI index for the
theme ”Wheat”, are presented in Table 4.

We first notice that taking into account VEGETATION data (medium
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Figure 6: Estimated first two eigenfunctions during year 2002 with VEGE-
TATION data for the themes ”Forest”, ”Wheat”, ”Maize” and ”Pastures”.
The first eigenfunction is drawn in plain lines whereas the second one is in
dotted lines.
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resolution trajectories) allows us to get better temporal interpolation of high
resolution data. Indeed, the ”lin” method performs poorly compared to the
approaches incorporating VEGETATION data. The gain can be rather
important, the error being divided by two compared to the ”lin” method,
when considering pixels containing more 40 % of wheat crops. Nevertheless,
even if the methods based on the BLUP give better predictions, the main
improvement in the interpolation seems to be due to the knowledge of the
mean temporal response in the area under study.

Many factors can explain this lack of improvement and the main one
seems to be a calibration problem, meaning that the reflectances of the two
different sensors are not exactly calibrated the same way and thus the tem-
poral evolution of medium resolution pixels is not as useful as it could be for
interpolating high resolution ones. This is clearly seen in Figure 7 where we
have drawn the mean phenological curves of four different crops according
to the two spatial resolutions for the PVI index.

6 Concluding remarks

Downscaling reflectances of mixed pixels is an important but difficult issue
in remote sensing, allowing to deduce with physical models many useful lo-
cal information such as water demand, soil moisture, crops development or
to derive finer land use classifications. Unfortunately, when using satellite
data, one often has to cope with a compromise between resolution and time
frequency. The low resolution imagery is cheap and frequent but its draw-
back is the aggregative character of the radiometric information it contains.

The simulation study clearly shows that taking into account simulta-
neously the information brought by sensors with different resolutions can
lead to considerable potential gain in temporal interpolation of High Res-
olution data. Nevertheless, our work also points out the need for an as
good as possible HR layer versus LR layer juxtaposition when one wants
to take advantage of the complementarity between the two types of data.
The required consistency principally depends on various factors such as:
sensors inter-calibration, accuracy of each layer georeferencing, projections
consistency, and also neighborhood effects (between adjacent pixels) which
present patterns that are resolution dependent. Although a particular at-
tention was paid on these different points, residual artifacts (principally
geometric) might persist and explain a part of the difference between the
synthetic and the real data exercise. This issue is beyond the scope of
the paper but deserves further attention. For example, we logically expect
a gain of consistency when reducing the resolution gap when considering
250 m resolution data (e.g. MODIS sensor) instead of the kilometric pixels
of SPOT/VEGETATION. This statistical approach can also be helpful to
address the combination of Low and High Resolution (information brought
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Figure 7: Comparison of the estimations of phenological curves according to
the resolution of the sensor, small circles for SPOT4/VEGETATION, lines
with black points for SPOT4/HRVIR.
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by both types of sensors) making thus possible studies necessary to the di-
mensioning of future satellite missions that could combine the two types
of sensors. Space Agencies and satellite makers could for example evaluate
the number and type of sensors that will have to operate simultaneously in
order to ensure a sufficiently frequent crop monitoring, at a specified level
of precision.

Besides remote sensing considerations, another point of interest is the
determination of the domain of validity of such an aggregation model when
there are spatial correlations between the temporal responses of a particular
crop. The ideal case for the model to be valid is when there is no variation
within a mixed pixel, meaning that all the variations of the responses of
different crops are between mixed pixel variations. On the contrary, the
worst case would be when all the variability is concentrated within coarse
resolution pixels, meaning that we have a kind of ”fractal” property. If we
assume that the spatial correlation is very large for very close neighbors and
low for far ones, which is a realistic assumption for crops, we can suppose
that we are not too far from the ideal case. Nevertheless this needs to
be quantified and deserves further investigations. Then, one interesting
question is what would be the best spatial resolution for disaggregation
when observing mixed pixels and thus how sensors should be calibrated ?

Another interesting issue is the extension to nonlinear indices such as
the NDV I index which is a non-linear combination of the responses in the
RED and Near Infra Red (Tucker, 1979). This index is widely used in
the remote sensing community because it can give a good measure of the
state of a crop and it has certain robustness properties. In order to get
local estimation of this index, one has to extend our random effect model
and consider a multivariate response disaggregation model, with outputs
RED(t) and NIR(t), and then perform a Taylor expansion of this index.
Applying the BLUP formula to this linear approximation allows to get local
estimations of the NDV I. We are working on this topic but this is beyond
the scope of this paper.

More generally, the proposed approach for disaggregation is based on
mixed effects models for longitudinal data and is able to handle huge sam-
ples with many time measurements. Mixed effects models are widely used
in other contexts such as medicine, biology (Diggle et al. 1994) and econ-
omy (Wooldridge, 2002) allowing to describe individual characteristics with
random parameters statistical models but generally with a low number of
individuals or a low number of measurements. Nowadays it is frequent to
have longitudinal data with both many individuals and many time measure-
ments. Our nonparametric approach which can also incorporate effectively
the effects of a relatively large number of covariates seems to be a good can-
didate for such studies. The proposed nonparametric methodology is rather
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efficient, leading to accurate estimation with a fast algorithm as shown in
the simulation study.
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