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Summary

This paper proposes statistical procedures to check if a real-valued covariate
X has an effect on a functional response Y (t). A nonparametric kernel regres-
sion is considered to estimate the influence of X on Y (t) and two test statis-
tics based on residual sums of squares and smoothing residuals are proposed.
Their acceptance levels are determined by means of permutations. The lack-
of-fit test for a class of parametric models is then discussed as a consequence
of the no effect procedure. Monte Carlo simulations provide an insight into
the level and the power of the no effect tests. A study of atmospheric radia-
tion illustrates the behavior of the proposed methods in practice.
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1 Introduction

Since the pioneer work of Deville (1974) on harmonic decomposition of ran-
dom functions, functional data analysis, a new field of statistics combin-
ing modern probability theory with computer intensive implementations, has
been developed. An overview of statistical problems, available methods and
case studies in a functional data setting are given, among others, in mono-
graphs by Ramsay and Silverman (2002, 2005) and Ferraty and Vieu (2006).

Much work has been done in the regression setting when one or both, the
response Y and the explanatory variable X, are valued in a function space.
When a real response depends on a functional predictor, for instance, the
functional linear regression is considered by Ramsay and Dalzell (1991) and
Cardot et al. (1999), generalized linear models are discussed in Marx and
Eilers (1999), Escabias et al. (2004), Cardot and Sarda (2005), Müller and
Stadtmüller (2005), or James (2002) dealing with functional predictors ob-
served in different time moments. A fully nonparametric approach is pro-
posed by Ferraty and Vieu (2002). The case of both functional variables
is outlined in Aguilera et al. (1999), Chiou et al. (2004) and Ramsay and
Silverman (2005).

We consider the case of a regression setting where the variations of a func-
tional response are explained by a real-valued predictor. This case has been
firstly studied by Cardot (2006) which introduces kernel estimators in the
context of the conditional functional principal components analysis. We use
the same nonparametric estimator of the regression function, defined in Sec-
tion 2. This regression problem has some interesting applications as discussed
in Cardot (2006) and as illustrated in Section 6 below where we consider at-
mospheric radiation curves, the (scalar) predictor being time.

The main goal of our study is to test the significance of the covariate effect
on the response. Testing procedures of a significant influence of the predictor
on the response in the functional linear model are suggested by Cardot et al.
(2003, 2004), the former based on asymptotic properties of the test statistics,
the latter using computer intensive methods. A functional bootstrap, studied
by Cuevas and Fraiman (2004), serves in a slightly different testing problem
of functional ANOVA (Cuevas et al. 2004). In Section 3, two statistics for
the no effect test procedure are suggested. At first, the classical Fisher’s
F -statistic is adapted for the functional setting in a way similar to that
proposed by Bowman and Azzalini (1997) in the real-valued response case.
An alternative test statistic based on smoothing residuals is also proposed. A
permutation approach is applied in order to obtain p-values and the influence
of the kernel smoothing parameter and the number of permutations are then
discussed.

As a consequence of the no effect test, Section 4 presents the lack-of-fit test,
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a method enabling to decide whether a specified parametric class of regres-
sion functions is adequate for the considered regression problem. In Section 5,
Monte Carlo simulations allow to check the good behavior of the two test pro-
cedures. A real data analysis concerning changes along time in atmospheric
radiation illustrates the performance of the lack-of-fit test in Section 6.

2 Nonparametric regression with functional re-

sponse

Let us consider a functional variable Y (t) taking values in the separable
Hilbert space of square integrable functions L2(T ) defined on the compact
interval T ⊂ R. The standard inner product 〈φ, ψ〉 =

∫
T
φ(t)ψ(t) dt, ∀φ, ψ ∈

L2(T ), and the standard norm ‖φ‖2 = 〈φ, φ〉, ∀φ ∈ L2(T ), are considered
throughout the paper. Let X be a real random variable with values in X ⊂ R

defined on the same probability space (Ω,A, P ) as Y (t) and possibly contain-
ing some additional information on Y (t).

Let us consider a relation between X and Y (t) in the form of a regression
function m(t, x) expressed as

m(t, x) = E
[
Y (t)|X = x

]
, t ∈ T , x ∈ X . (1)

Having a sample
(
Xi, Yi(t)

)
, i = 1, . . . , n of i.i.d. realizations of

(
X,Y (t)

)
,

Cardot (2006) proposed a consistent kernel smoother estimator m̂(t, x) of the
conditional mean (1),

m̂(t, x) =

n∑

i=1

wi(x, h)Yi(t), t ∈ T , x ∈ X , (2)

where the weights wi are defined as

wi(x, h) =
K

(
(Xi − x)/h

)
∑n

i=1K
(
(Xi − x)/h

) ,

and the real kernel function K(·) is a positive bounded function, symmetric
around zero, with compact support.

The bandwidth parameter h > 0 controls the smoothness of the estimator.
Following the nonparametric regression ideas of Härdle and Marron (1985),
we can perform a (data-driven) cross-validation procedure in order to obtain
the “optimal” bandwidth h∗, i.e.

h∗ = argmin
h>0

n∑

i=1

∣∣∣∣Yi − m̂−i(Xi)
∣∣∣∣2, (3)

where m̂−j(t, x) denotes the kernel estimator (2) calculated from the sample(
Xi, Yi(t)

)
, i = 1, . . . , n, with the j-th pair

(
Xj , Yj(t)

)
excluded.
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3 No effect test

The smoother (2) enables to quantify the covariate effect X on the variable
of interest Y (t), however, it does not provide any information about the
statistical significance of the X-Y relation.

As discussed in Cardot (2006), working with the conditional moments and
decomposition of Y (t) may positively influence results of the analysis. On
the other hand, the conditional models are more complicated from both the
theoretical and the computational point of view. Thus, the non-negligible
effect of the covariate should be justified before its inclusion into the analysis.

Therefore, we are interested in testing the null hypothesis of no effect of X
on the conditional mean m(t, x), i.e.

H0 : ∀x ∈ X m(t, x) = µ(t), t ∈ T , (4)

where EY (t) ≡ µ(t) ∈ L2(T ) is an unknown function. We test against the
alternative that the conditional mean m(t, x) is a general function of x, i.e.

A0 : ∃x ∈ X m(t, x) 6= µ(t), t ∈ T . (5)

In the following, we propose two test statistics for the no effect hypothesis:
an adaptation of Fisher’s F -statistic and an approach based on smoothing
residuals.

3.1 F -statistic

In a classical linear model setting, ratio of residual sums of squares (F -
statistic) is widely used to test a submodel. Adapting this idea for functional
regression we propose a test statistic in the form

F =
RSS0 − RSS1

RSS1
, (6)

where residual sums of squares RSS0 and RSS1 are taken with respect to the
hypothesis and the alternative, respectively.

Introducing an estimator µ̂(t) of the mean function µ(t)

µ̂(t) =
1

n

n∑

j=1

Yj(t), t ∈ T , (7)

and estimating the conditional expectation m(t, x) by the nonparametric
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smoother (2), the corresponding residual sums of squares take the forms

RSS0 =

n∑

i=1

∣∣∣
∣∣∣Yi − µ̂

∣∣∣
∣∣∣
2

=

n∑

i=1

∫

T

(
Yi(t) − µ̂(t)

)2
dt,

RSS1 =

n∑

i=1

∣∣∣∣Yi − m̂(Xi)
∣∣∣∣2 =

n∑

i=1

∫

T

(
Yi(t) − m̂(t,Xi)

)2
dt.

The idea is to reject the hypothesis H0 at a prescribed level α ∈ (0, 1) for
“large” values of F, i.e. when the functional regression estimator profits from
the knowledge of X and fits the data significantly better than the uncondi-
tional sample mean function.

3.2 Smoothing residuals

Let us define the empirical residuals

êi(t) = Yi(t) − µ̂(t), t ∈ T , i = 1, . . . , n.

If the null hypothesis H0 is true, the residuals êi(t) ∈ L2(T ) should form
a sample of centered uncorrelated functional variables, i.e. Eêi(t) = 0, ∀t ∈
T , ∀i, and E(êi(s)êj(t)) = 0, ∀(s, t) ∈ T × T , ∀i 6= j. Denoting by m̃e(t, x)
the kernel smoother (2) applied to the residuals êi(t), i.e.

m̃e(t, x) =

n∑

i=1

wi(x, h)êi(t), t ∈ T , x ∈ X , (8)

this estimator, under H0, is close to 0 (the zero function). Thus, being moti-
vated by a real-valued regression case discussed by Hart (1997), we suggest
a smoothing residuals test statistic

R =

n∑

i=1

∣∣∣∣m̃e(Xi)
∣∣∣∣2 =

n∑

i=1

∫

T

[
m̃e(t,Xi)

]2
dt. (9)

As well as for F -statistic, we reject the no effect null hypothesis, if the value
of R is too large.

Remark. The norm of the smoother m̃e(t, x) in the test statistic (9) should,
at the first glance, be taken with respect to the variability of residuals. As
discussed in the following, such a “standardization” is not necessary with
a permutation approach.

3.3 The permutation principle

We have presented two approaches that allow to build test statistics for the
null hypothesis (4), however, finding their exact, or at least asymptotic, dis-
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tributions in order to get critical values seems to be quite a hard task. There-
fore, we propose to adopt computationally intensive permutation procedures
discussed by e.g. Raz (1990), Bowman and Azzalini (1997), or Cardot et al.
(2004).

These approaches rely on the fact that the pairing of any particular X and
Y (t) in the observed sample is, under H0, entirely random. Hence, the distri-
bution of the proposed statistics can be obtained by calculating their values
based on all permutated samples

(
Xπk(i), Yi(t)

)
, k = 1, . . . , n!, where πk is

the k-th permutation of {1, . . . , n}. Note that the permutation principle is
the way to obtain, at least theoretically, a distribution-free unbiased test, see
Lehmann (1959).

Since performing all the n! permutations is almost impossible, we approxi-
mate in practice the distribution by K values of the test statistic based on
randomly chosen K permutations. The empirical p-value pv is then defined
as the proportion of simulated test statistics Fk or Rk which are greater than
the one Fobs, Robs respectively, observed from the original data set,

pvF =
1

K

K∑

k=1

I(Fk > Fobs), pvR =
1

K

K∑

k=1

I(Rk > Robs), (10)

where I denotes the indicator function. The null hypothesis is rejected if the
empirical p-value pv is smaller then the prescribed level of the test α.

3.4 Bandwidth choice and number of permutations

The estimated p-value (10) depends on the chosen bandwidth parameter h
which controls the smoothness of the kernel estimator (2) as well as on the
number of permutations K performed to simulate the distribution of the test
statistic.

We have already mentioned the cross-validation criterion as a method to
obtain “optimal” bandwidth h∗. However, this procedure “optimizes” a value
of h with respect to a predictive error which is not always optimal with
respect to the testing problem. Therefore, we recommend to perform the
permutation test for different values of h in some interval around h∗ and
base the definitive decision on the “optimal” p-value pv∗ and a proportion
of a significance trace lying under the level of the test. An illustration of
a significance trace encouraging the rejection of the null hypothesis is shown
on Figure 1.

To decide how many permutations are sufficient to obtain a reasonable p-
value, one can plot a diagram similar to Figure 2. It represents the relation
between the number of performed permutations K and 10 estimated p-values
for a simulated data set with n = 40. One can see that different estimated
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p-values become very close for K > 5000 with p-values varying about 0.075
(see Table 1 for numerical summary). In other words, a mean of 10 simulated
p-values for 5 000 permutations or, equivalently, performing 50 000 permuta-
tions seems to give accurate enough estimates of the p-value for this particular
data set.

Regarding the variance of the proposed binomially distributed estimators
(10), Good (1997) claims that relatively small numbers K ∼ 2000 − 3000 of
permutations ensure a negligible variance of pvF and pvR. However, one has
to be very careful specially when the p-value is close to the requested level.

h*

pv*

level

Bandwidth h

p−
va

lu
e

Figure 1: A significance trace. A final decision whether to reject the hypoth-
esis is recommended to be taken with respect to the optimal p-value pv∗ and
to the proportion of the significance trace lying under the level of the test.
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Figure 2: As the beginning of the simulation may significantly influence the
estimate, a huge amount (50 000 in this case) of permutations is recommended
to obtain a reliable p-value.

K/103 1 2 3 4 5 6 7 8 9 10

mean pv ×102 7.79 7.86 7.96 7.96 7.90 7.89 7.85 7.85 7.83 7.80

std pv ×102 1.24 0.88 0.82 0.69 0.61 0.54 0.54 0.56 0.48 0.47

Table 1: An illustration of the mean values and standard deviations of 10
estimated p-values for different numbers of permutations K.

As

pvk+1
F =

{
k

k+1pvk
F if Fk+1 ≤ Fobs,

k
k+1pvk

F + 1
k+1 if Fk+1 > Fobs,

and k/(k + 1) ∼ 1 with increasing k, one recognizes, that the value of pv
is significantly influenced by the beginning of the simulation. The one-step
change in pv is almost negligible as K increases, and thus a huge amount of
permutations (105) is requested to obtain a reliable estimate. Even if Good’s
advice may work in practical analysis, we recommend to simulate as many
permutations as possible from the time-consumption point of view.

4 Lack-of-fit test

If the no effect hypothesis H0 is rejected, a natural question appears: Can we
find an appropriate (parametric) model explaining the Y (t) on X regression?

Let us denote by r(t, x; θ) a parametric function supposed to be a reasonable
model of the unknown mean function m(t, x). Denoting by CΘ a class of
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functions CΘ =
{
r(·, ·; θ),θ ∈ Θ ⊆ R

q
}
, we want to test the null hypothesis

H1 : ∀x ∈ X m(t, x) ∈ CΘ, t ∈ T , (11)

against the general alternative that H1 does not hold.

Let θ̂ be a consistent estimator of θ assuming the null hypothesis is true.
Then, if H1 holds, residuals êi(t) defined as

êi(t) = Yi(t) − r(t,Xi; θ̂), t ∈ T , i = 1, . . . , n,

have to satisfy the no effect hypothesis H0 discussed in the previous section.
Performing the lack-of-fit test thus simply consists in estimating the unknown
parameter θ and applying the no effect test on residuals described in previous
section.

5 A simulation study

In this section, we propose to compare the performances of the two test
procedures described before thanks to a Monte Carlo study.

For sake of simplicity, the interval T is taken to be T = [0, 1] and all functional
variables and mean functions are discretized in p = 100 equispaced points
0 = t1 < t2 < · · · < tp = 1.

5.1 The level of the test

Let us consider an additive model with a fixed mean function µ(t) and a ran-
dom error term ε(t), i.e.

Y (t) = µ(t) + ε(t).

The following mean functions are taken:

µ1(t) = 0, (12)

µ2(t) = 3(t− 1/2)2, (13)

µ3(t) = log(50t+ 1) + cos(2πt), (14)

µ4(t) = sin(πt) cos(3πt). (15)

The explanatory variablesXi are drawn independently on ε from the standard
normal distribution, the uniform distribution on [0, 1], and the t distribution
with 2 degrees of freedom, respectively. Random terms ε(tj), j = 1 . . . , p,
were simulated either as a zero mean Brownian motion or i.i.d. zero mean
random variables following:
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• the normal distribution N(0, σ2), σ2 = 0.1, 0.25, 1, 4 ;

• the uniform distribution on [−1/2, 1/2] ;

• t distribution with 2 degrees of freedom transformed to have a zero
mean.

Samples
(
Xi, Yi(t)

)
of different sample sizes n = 20, 50, and 100 are gener-

ated for each simulation. For each sample, K permutations are performed
to obtain an appropriate p-value of the test statistic. The number of per-
mutations K has been chosen using the ad hoc procedure based on diagrams
similar to those presented in Figure 2. We decided to perform K = 5000
permutations when the sample size is n = 20, K = 10000 when the sample
size is n = 50, and K = 20000 for n = 100.

Concerning the choice of the bandwidth parameter h, the automatic cross-
validation criterion (3) has been used throughout the simulation study. How-
ever, before the simulation started we have carefully checked the significance
traces for several samples and all simulation settings. The obtained p-values
have been stable in the neighborhood of the cross-validated h∗, and thus the
automatic procedure producing the p-value pv∗ can be considered reliable.

The results of the simulations are similar for all combinations of the mean
functions and distributions of X and ε(t) and both considered test statis-
tic. Tables 2, 3, 4, and 5 give the empirical levels of the test statistics for
i.i.d. gaussian error terms and Brownian motion error terms, respectively,
uniformly distributed X and two theoretical levels α = 5% and α = 10%.
We first remark that simulated levels are close to the theoretical ones for
both test statistics. It seems that the test procedure performs similarly for
both considered error terms, i.e. the pointwise correlation between εi(t) and
εi(s) does not influence the test behavior. As expected, the different mean
functions do not play a significant role either.
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µ1(t) = 0 µ2(t) = 3(t − 1/2)2

n = 20 n = 50 n = 100 n = 20 n = 50 n = 100

σ2 = 0.01 4.9% 5.2% 5% 4.7% 5.1% 5.2%

σ2 = 0.25 5.2% 5.2% 4.5% 5.5% 5% 4.8%

σ2 = 1 4.7% 4.9% 4.8% 5.2% 5.3% 5%

σ2 = 4 4.9% 5.1% 5.1% 6 % 4.9% 4.9%

µ3(t) = log(50t + 1) + cos(2πt) µ4(t) = sin(πt) cos(3πt)

n = 20 n = 50 n = 100 n = 20 n = 50 n = 100

σ2 = 0.01 6% 4.5% 5% 4.2% 4.5% 5%

σ2 = 0.25 5% 4.5% 5.1% 6.2% 4.9% 5%

σ2 = 1 5.5% 5.2% 5% 5.1% 5.2% 5.1%

σ2 = 4 5% 4.9% 5% 4.5% 4.8% 5%

Table 2: Simulated levels of the no effect test using F statistic for uniformly
distributed X and error terms ε(tj) having the normal distribution N(0, σ2).
The theoretical level α = 5%.

µ1(t) = 0 µ2(t) = 3(t − 1/2)2

n = 20 n = 50 n = 100 n = 20 n = 50 n = 100

σ2 = 0.01 4.8% 5 % 4.6% 4.8% 5.1% 5%

σ2 = 0.25 5.3% 5.3% 4.5% 5.1% 5.2% 4.9%

σ2 = 1 6% 4.8% 5.2% 5.2% 5.3% 5%

σ2 = 4 6% 5.1% 5.8% 5 % 4.8% 5.2%

µ3(t) = log(50t + 1) + cos(2πt) µ4(t) = sin(πt) cos(3πt)

n = 20 n = 50 n = 100 n = 20 n = 50 n = 100

σ2 = 0.01 6% 4.7% 5% 4.5 % 4.8% 5%

σ2 = 0.25 5.2% 4.8% 5.1% 6 % 4.9% 4.9%

σ2 = 1 4.9% 5.3% 4.9% 5.2% 5.1% 5.1%

σ2 = 4 5.5% 4.9% 5% 4.7% 4.8% 5%

Table 3: Simulated levels of the no effect test using R statistic for uniformly
distributed X and error terms ε(tj) having the normal distribution N(0, σ2).
The theoretical level α = 5%.
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µ1(t) = 0 µ2(t) = 3(t − 1/2)2

n = 20 n = 50 n = 100 n = 20 n = 50 n = 100

σ2 = 0.01 9.5% 8.5% 10.5% 11.5% 11% 10.2%

σ2 = 0.25 9 % 9.8% 9.8% 10% 10.2% 10.3%

σ2 = 1 8.5% 9 % 10.5% 12% 9.5% 9.8%

σ2 = 4 12.2% 12 % 10.2% 9% 9.9% 10.5%

µ3(t) = log(50t + 1) + cos(2πt) µ4(t) = sin(πt) cos(3πt)

n = 20 n = 50 n = 100 n = 20 n = 50 n = 100

σ2 = 0.01 10% 9.5% 10.2% 9% 9.5% 9.8%

σ2 = 0.25 9.5% 9.5% 9.7% 10% 10.1% 11.1%

σ2 = 1 9% 10.2% 11.3% 9.6% 9.9% 10.3%

σ2 = 4 10.5% 10% 10.5% 9% 10.3% 9.7%

Table 4: Simulated levels of the no effect test using F statistic for uniformly
distributed X and Brownian motion error terms. The theoretical level α =
10%.

µ1(t) = 0 µ2(t) = 3(t − 1/2)2

n = 20 n = 50 n = 100 n = 20 n = 50 n = 100

σ2 = 0.01 10.1% 9.5% 10.3% 9.6% 11% 10 %

σ2 = 0.25 10.2% 9.8% 9.8% 10.5% 10.2% 10.1%

σ2 = 1 9.8% 10.3% 9.6% 9.7% 9.5% 9.6%

σ2 = 4 9.9% 10% 10.2% 10.2% 9.9% 10.5%

µ3(t) = log(50t + 1) + cos(2πt) µ4(t) = sin(πt) cos(3πt)

n = 20 n = 50 n = 100 n = 20 n = 50 n = 100

σ2 = 0.01 10.2% 10% 10% 10.9% 9.5% 9.3%

σ2 = 0.25 10.7% 9.8% 9.5% 10% 10.5% 10.1%

σ2 = 1 9.8% 10.1% 10.1% 9.6% 10.2% 10.3%

σ2 = 4 9.9% 10.5% 9.5% 9.8% 9.8% 10 %

Table 5: Simulated levels of the no effect test using R statistic for uniformly
distributed X and Brownian motion error terms. The theoretical level α =
10%.

5.2 Power of the test

To illustrate the power of the no effect test and to compare the test statistics
under the alternative we have simulated samples

(
Xi, Yi(t)

)
, i = 1, . . . , 80, as
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follows:

Yi(t) =





sin
(

2π
ωi

(t− γi)
)
, if Xi < 25,

sin
(

2π
ωi

(t− γi)
)

+ β(Xi − 25), otherwise,
(16)

where Xi is drawn from the uniform distribution on [0, 80], ωi is drawn from
the uniform distribution on [0.95, 1.05], γi from the uniform distribution on
[−0.05, 0.05]. The coefficient β is a fixed coefficient defining the alternative
to the no effect hypothesis and allows us to check the ability of the test
procedures to detect the alternative when the mean function is not too far
from the null hypothesis. Indeed, when β is equal to zero, the null hypothesis
is true.

The simulation scheme was motivated by the real data example discussed
in Section 6. Although it is written in an unusual form for the regression
setting, Yi(t) may also be expressed as Yi(t) = m(t, x) + εi(t), where

εi(t) = sin

(
2π

ω
(t− γ)

)
− E sin

(
2π

ω
(t− γ)

)
, i = 1, . . . , 80.

We have made 100 replications of sample
(
Xi, Yi(t)

)80

i=1
. For each replication,

we have performed 10 000 permutations to obtain the corresponding p-values.
The power of the test procedures is then estimated as a fraction of p-values
less than a prescribed level of the test. The results are summarized in Table 6
and shown in Figure 3. As expected, the power increases when the absolute
value of β increases, as the alternative becomes more easy to detect and when
the level increases since the null hypothesis is rejected more often.

F statistic R statistic

β × 104 α = 1% 2.5% 5% 10% 1% 2.5% 5% 10%

5 4% 10 % 12% 22% 2% 8% 14% 18%

7.5 10% 18 % 24% 34% 0% 4% 16% 30%

10 4% 20 % 26% 46% 4% 12 % 26% 44%

12.5 16% 24 % 40% 64% 10% 24 % 43% 64%

15 8% 26 % 60% 96% 6% 26 % 66% 96%

15.5 16% 34 % 60% 100 % 16% 38 % 70% 100 %

16 16% 36 % 70% 100 % 10% 42 % 78% 100 %

16.5 18% 48 % 72% 100 % 18% 48 % 82% 100 %

17 26% 48 % 82% 100 % 18% 54 % 92% 100 %

17.5 18% 66 % 94% 100 % 24% 66 % 98% 100 %

20 56% 92 % 100% 100 % 58% 98 % 100% 100 %

22.5 84% 100% 100% 100 % 94% 100% 100% 100 %

Table 6: Illustration of the power of the tests based on simulated samples
according to (16) for different alternatives β and the test levels α.
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It seems, from Table 6 and plots in Figure 3, that both considered test statis-
tics behave well and similarly. The F statistic performs slightly better for
small values of β, i.e. in the cases when the alternative is close to the hy-
pothesis, R seems to be more powerful for the more distant alternatives.
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Figure 3: The simulated power of the no effect test for both considered test
statistics, different test levels and the “alternative” coefficient β×103 varying
in [0.5, 2.25].
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Figure 4: The significance trace for a simulated sample according to (16) with
β = 1.6 × 10−3.

However, it turns out from the performed simulations that the R statistic is
more stable than the F one in the sense of the significance trace. A typical
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example for one data set simulated according to (16) with β = 1.6 × 10−3

is given on Figure 4. Although both statistics reach p-values slightly smaller
than 5% for the “optimal” cross-validated h∗ = 20, the F statistic, in contrast
to R, indicates to accept the hypothesis for h < 20. As we use data-driven
method to choose the optimal bandwidth, the comparison of the significance
traces of both test statistics is recommended to take into account the stability
of the procedures before the final acceptance/rejection is done.

5.3 The case of noisy discretized curves

In practice, one can not observe the whole curves Yi(t), t ∈ T , but has
discretized and noisy data

yij = Yi(tij) + ǫij , j = 1, . . . , pi, i = 1, . . . , n,

at design points ti1 < ti2 < · · · < tipi
, which may vary from one trajectory to

another, with ǫij staying for a zero mean white noise. Some pre-smoothing
steps, discussed by e.g. Benko et al. (2006), Besse et al. (1997), Staniswallis
and Lee (1998), or Yao et al. (2005), must generally be performed to trans-
form the data to the same design grid. In the following paragraphs we give
some remarks on the influence of different design point settings on the test
procedure.

Beside the equidistant fixed design points common for all variables (D1), we
have considered random designs at p = 100 points (common for all variables)
following

(D2) the uniform distribution, i.e. yij = Yi(Tj), Tj ∼ U[0, 1];

(D3) the Beta(1.5, 2.75) distribution, i.e. yij = Yi(Tj), Tj ∼ Beta(1.5, 2.75).

Finally, an individual random design (D4) according to the Beta(1.5, 2.75)
distribution, i.e. yij = Yi(Tij), Tij ∼ Beta(1.5, 2.75). In the latter case (D4),
each simulated curve Yi(t) has been “replaced” with its “classical” kernel

estimator Ŷi(t) obtained by regressing the couples (yij , tij). The leave-one-
out cross-validation criterion has been used to tune the bandwidth parameter.
This pre-smoothing step enables to re-discretized the curves Ŷi(t) into the
equidistant fixed design and consequently to use quadrature rules in order
to approximate the integrals in (3), (6), and (9). More details on estimating
m(t, x) from (noisy) non-equidistant discrete data can be be found in Cardot
(2006).

Table 7 illustrates the power of the test for the simulating scheme (16) with
β = 12.5× 10−4. Results are similar for all considered designs, it seems that
pre-smoothing of the response variables increases a little bit the power mainly
for small significance levels α. The obtained results are not surprising as the
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effect of the covariate X in (16) is additive and thus influences the response
Y (t) homogenously in t ∈ T .

Power α = 5% Power α = 10%

(D1) (D2) (D3) (D4) (D1) (D2) (D3) (D4)

F 40 % 41 % 50 % 56 % 64 % 67 % 71% 67%

R 43 % 45 % 51 % 52 % 64 % 65 % 70 % 67%

Table 7: The influence of different design settings on the power of the test
procedure – the additive simulation model (16).

Design points play more important role when the covariate X effects the
functional variable only in a part of its support T . To illustrate the behavior,
we have considered a simple multiplicative setting

Yi(t) = a(2π(t− γi), Xi) sin
(
2π(t− γi)

)
, (17)

where the amplitude function a(t,Xi) is constant in the first half of the sine
period and depends on the uniformly distributed explicative Xi in the second
half, i.e.

a(t,X) =

{
1, if 2kπ < t ≤ (2k + 1)π, k ∈ Z,

0.15X, if (2k + 1)π < t ≤ 2kπ, k ∈ Z,

and where γi follows the uniform distribution on [−0.05, 0.05].

From the results presented in Table 8 one can see, that the asymmetric Beta
design (D3) with the discretization points concentrated in the first unaffected
half of the sine function is considerably less powerful than the equidistant
(D1) or the uniform (D2) case. For this particular simulation it turns out
that pre-smoothing applied to the Beta design remarkably increases the power
of the test.

Power α = 5% Power α = 10%

(D1) (D2) (D3) (D4) (D1) (D2) (D3) (D4)

F 53 % 60 % 15 % 98 % 92 % 85 % 33% 100%

R 52 % 61 % 14 % 99 % 94 % 85 % 32 % 100%

Table 8: The influence of different design settings on the power of the test
procedure – the multiplicative simulation model (17).

To conclude, if the discretization design is not homogenous, pre-smoothing
steps are worth applying. The final decision is the to be taken with respect
to the test performance for both, the original and the smoothed, data sets.



16

6 Application to vertical atmospheric radia-

tion profiles

Since 1994, vertical profiles of atmospheric radioactivity have been measured
at the upper air meteorological station of the Czech Hydrometeorological In-
stitute in Prague-Libuš. Four times a year (monthly during the years 1994 –
2000) a meteorological balloon with a radioactivity sonde system ascends
from the Earth’s surface up to approximately 35 km and detects short cur-
rent pulses coming from the interaction between the radiation and the sonde
material. Each launch of a balloon thus provides one observation of the ver-
tical atmospheric radiation profile – giving a measure of dependence of the
radiation intensity on the altitude.

About 100 profiles, overall, have been measured since 1994. We have carefully
chosen 69 observations that were measured (at least) to the altitude of 35
km and do not suffer from any evident measurement errors due to technical
problems with signal transmitting.

Let us denote by Yi(a), i = 1, . . . , n = 69, a radiation profile measured at
a random time Xi (in days since the first observation) with a ∈ [0, 35] repre-
senting the altitude. For the purpose of this analysis, we assume Yi(a) to be
random parametric functions

Yi(a) = r(a; ϑi) = ϑi
1ϑ

i
3

(
1 + (ϑi

2 − 1)e−ϑi

3
(a−ϑi

4
)
)ϑi

2
/(1−ϑi

2
)

(18)

+ϑi
5

(
1 + e−ϑi

6
(a−ϑi

7
)
)

+ ϑi
8.

Reasons to consider atmospheric profiles in the form (18) additively combin-
ing the derivative of the Richards growth curve with the logistic curve are
explained in details in Antoch et al. (2006) as well as an estimation procedure
of the parameters ϑ

i ∈ R
8.

Regarding the available sample of radiation profiles Yi(a) (Figure 5) through
meteorologists’ eyes, two questions appear:

a) Do radiation profiles change along time ?

b) If there is a change, can we find an appropriate model taking time into
account ?

To answer the questions we first apply the no effect permutation test for

mrad(a, x) = E
[
Y (a)|X = x

]
, a ∈ [0, 35], x ∈ R

+, (19)

As Hlubinka and Prchal (2006) suggest parametric estimators of mrad(a, x),
we then show their adequacy using the lack-of-fit test.
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Figure 5: The sample of 69 radiation profiles measured in Prague within the
years 1994 – 2004.

Remark. Meteorologists suppose that there exists a natural radiation back-
ground in the atmosphere possibly varying in a long-time period connected
with the 11-years solar cycle. In a short-time (days) period, the radiation in
low altitude levels (up to 10km) may be effected by local weather (storms,
rainfalls, etc.). On the other hand, the permanent turbulent changes in the
upper (stratospheric) layers are not supposed to influence the natural radia-
tion. As we observe the profiles monthly and four times per year, respectively,
the short-time dependence does not have to be taken into account. Hence,
we can suppose the couples

(
Xi, Yi(a)

)
are an i.i.d. sample and we can apply

regression techniques rather than “time-series” tools.

6.1 No effect test

It seems from the available data sample that there was a decrease of radiation
in the period 2000 – 2002, at least a decrease in altitudes where the radiation
reaches its maximal intensity (25th km).

To get a better idea on the time dependence, Hlubinka and Prchal (2006)
apply the nonparametric kernel estimator (2) and discuss in details different
choices of the smoothing parameter h. As an illustration, the estimate for
a moderate value h = 265 is given in Figure 6.

In order to statistically prove “evident” changes in radiation we have per-
formed the no effect permutation tests of the hypothesis

H0
rad : ∀x ∈ R

+ mrad(a, x) = µrad(a), a ∈ [0, 35]. (20)
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We have simulated 20 000 permutations of the both discussed test statistics
resulting into practically zero p-values (≪ 10−5) for all reasonable values of
the smoothing parameter h ∈ [50, 3000].We thus, as expected, reject the null
hypothesis H0

rad for all common test levels α = 1, 5, 10%.

6.2 Lack-of-fit test

Aside nonparametric kernel smoothing, Hlubinka and Prchal (2006) suggest
(non-periodic and periodic) parametric estimators of (19). As we have ac-
cepted a significant dependence of the radiation on time, the lack-of-fit test
serves to decide, whether their parametric estimators are appropriate descrip-
tions of radiation time changes.

To illustrate the lack-of-fit test performance we have chosen a non-periodic
model

m̂rad(a, x) = r(a; ϑ0) exp
{
β(a) exp

{
−(x− γ)2/δ

}}
, (21)

where r(a) of the form (18) stays for a baseline radiation with eight real
parameters ϑ

0 to be estimated, γ, δ ∈ R are unknown time parameters, and
the functional parameter β(a) stays for the amplitude. We distinguish two
cases – the basic model with a constant amplitude parameter β(a) ≡ α ∈ R

and the adaptive model with an altitude dependent amplitude β(a) to be
estimated.

The least squares estimates of the parameters are summarized in Table 9.
Figure 6 then shows comparison of the kernel and parametric estimates – see
Hlubinka and Prchal (2006) for further details.

We have performed 20 000 permutations in order to obtain p-values of the
lack-of-fit tests. Figure 7 presents the reached p-values for different band-
width parameters varying around the cross-validated optimal one. Table 10
numerically summarizes the figure. We see that both statistics performs sim-
ilarly and that employing the adaptive parameter β(a) significantly improves
the estimator, as the p-values increase from 0.07 up to almost 0.3.

Although the results are omitted here, let us remark, that the periodic propos-
als of Hlubinka and Prchal (2006) behaves even better than the non-periodic
ones. Both adaptive models thus may be considered as (statistically) ade-
quate descriptions of the radiation time changes and are to be proposed to
the meteorological community to discuss their physical meanings and conse-
quences.



19

Basic model

ϑ0

1
108 ϑ0

7
7.92

ϑ0

2
0.84 ϑ0

8
0.18

ϑ0

3
0.14 α -0.23

ϑ0

4
18.8 γ 2273

ϑ0

5
4.36 δ 3× 105

ϑ0

6
0.59

Adaptive model

ϑ0

1
110 ϑ0

7
7.9

ϑ0

2
0.81 ϑ0

8
0.18

ϑ0

3
0.13 α —

ϑ0

4
18.9 γ 2428

ϑ0

5
4.33 δ 3× 105

ϑ0

6
0.6

0 5 10 15 20 25 30 35
−0.3

−0.2

−0.1

0
Non−periodic estimator

Altitude [km]

A
m

pl
itu

de

Table 9: The least squares estimates of the parametric model (21). The plot
shows the estimated parameter β(a).
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Figure 6: The kernel and parametric estimates of the radiation profiles and
their comparison at the altitude of 25 km.
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Estimator Optimal bandwidth h F stat. p-value R stat. p-value

Basic 1230 0.0784 0.0827

Adaptive 3000 0.2424 0.2748

Table 10: The optimal bandwidths and the corresponding p-values of the lack-
of-fit test performed for both parametric models.
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Figure 7: Estimated p-values of the lack-of-fit test for both basic and modified
parametric models.

7 Conclusion

We have proposed a permutation approach to check if a real covariate has
a significant effect on a functional response in a regression setting. The
principles of both suggested test statistics, the adapted F -statistic and the
smoothing residuals one, are easy to implement in practice. Even if a huge
amount of permutations is usually required to obtain a reliable estimate of
the p-value, the time consumption of the procedures does not seem to be
a limiting factor nowadays.

The Monte Carlo simulation study confirms that the behavior of both test
statistics corresponds to their theoretical unbiasedness. The R statistics then
seems to be more stable with respect to different values of the smoothing
parameter h. For the practical purposes, however, we recommend to perform
the test for both test statistics and base the final decision on their significance
plots.

The real-data analysis of the atmospheric radiation profiles shows that the
proposed lack-of-fit test performs in the expected way and may serve as a tool
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in a decision problem of testing if some parametric class of models is adequate
to describe the evolution along time of the observed curves.
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